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Abstract

The goal of this research is to quantify variations in both space and time1

of water stored in the terrestrial environment within South Carolina during2

and following a period of drought. We use a water balance approach that3

synthesizes observed and modeled hydrologic fluxes for sub-watersheds de-4

fined by the drainage area between streamflow gaging stations. We apply5

the approach for the period 1998-2007 to study the impact of a drought that6

occurred during the early part of this time period on terrestrial water stor-7

age within the state. Results from the analysis provide evidence of distinct8

annual and interannual variation in water storage for different regions of the9

state, with the fall season having a water surplus and spring season exhibiting10

a water deficit. The impact of the drought varied for different regions of the11

state depending in part on hydrogeological conditions including soil type and12

depth to the groundwater level. Comparing estimates of rate of change in13

terrestrial water storage with observed groundwater levels, as an independent14

validation of the terrestrial water storage estimations, shows that many of15

the sub-watersheds within the state exhibited similar patterns between vari-16
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ation of rate of change in terrestrial water storage estimates and observed17

groundwater levels during the period of analysis, as expected. However, some18

sub-watersheds did not follow general annual and interannual variations in19

groundwater level or in estimated rate of change in terrestrial water storage20

relative to neighboring sub-watersheds. We speculate that these abnormali-21

ties may be related to human influences that alter local water storage trends22

within specific sub-watersheds of the state, however future work is needed23

to further investigate this possible explanation. We conclude through this24

study that the water balance approach presented is a simple yet valuable25

means for estimating variations in water availability at a regional spatial26

scale by synthesizing existing observations and model output data within a27

geospatially-explicit context.28

Keywords: Regional-scale water resources, drought, water availability,

water balance

Introduction29

South Carolina experienced a severe drought between 1998 and 2002.30

During this time, precipitation decreased by 10-30% from normal levels re-31

sulting in reduced streamflows and groundwater levels throughout the state32

(Badr et al., 2004; Gellici et al., 2004). The drought presented challenges to33

the state such as meeting water supply needs for human and industrial pur-34

poses, salt water intrusion in the coastal region of the state, and decreased35

water levels in lakes and groundwater aquifers. The drought intensified wa-36

ter rights issues in the state as well because South Carolina shares two of its37

major river basins with neighboring states: the Savannah River with Geor-38
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gia and the Catawba River with North Carolina. Growing water demands39

and increased hydrologic variability due to global climate change (Oki and40

Kanae, 2006) will likely intensify the challenges faced by the state during41

future droughts. Other regions of the world facing similar challenges also re-42

quire techniques for understanding regional water resources under a variety of43

demands and stresses. We present research that investigates an approach for44

quantifying regional scale water balances through an application case study45

for river basins whose rivers flow through South Carolina.46

Hydrologic modeling and analysis can aid in this problem by providing47

estimates of future water availability under changing conditions such as cli-48

mate change, land use change, and increasing water demands (e.g., Letten-49

maier et al., 1999; Rossi et al., 2008; Tung and Haith, 1995; Legesse et al.,50

2003; Wurbs et al., 2005). Detailed, physically-based models of regional-scale51

hydrologic systems used to address such questions can be problematic for rea-52

sons that have been well described in the literature (e.g., Grayson et al., 1992;53

Jakeman and Hornberger, 1993; Beven, 2002; McDonnell et al., 2007). Part54

of the problem has been that, at the river-basin-scale, hydrology is subject55

to complex interactions between physical, biological, and social systems, and56

no model is capable of addressing all of the interactions at play in watershed57

systems. Furthermore, those models that do attempt to simulate such inter-58

actions are difficult to parameterize and calibrate at a regional scale due in59

part to a lack of data describing system parameters, initial conditions, and60

boundary conditions. This leads to the need for uncertainty analysis both61

in terms of process representations, system parameters, and forcing data62

(Minville et al., 2008; Yang et al., 2008; Fekete et al., 2004; Christensen and63
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Lettenmaier, 2007).64

Alternative approaches have been proposed for estimating basin-scale wa-65

ter resources that include developing statistical tools for time series records66

(e.g., Novotny and Stefan, 2007), analyzing of components of the hydrologic67

cycle (e.g., baseflow recession as in Wang and Cai, 2009), or using semiem-68

perical relationships for coupled water-energy balances such as the Budyko69

hypothesis (Wang et al., 2009; Yang et al., 2007). One such approach, devel-70

oped and applied primarily in the climate science community for quantifying71

changes in basin-scale water resources, is the so called Moisture Convergence72

minus Runoff (MCR) approach (Rasmusson, 1967; Seneviratne et al., 2004;73

Yeh et al., 1998). In this approach, water balance equations for the terres-74

trial and atmospheric portions of the hydrologic cycle are equated to estimate75

the rate of change in terrestrial water storage (TWS). TWS is a term that76

includes all stores of water within the terrestrial environment including soil77

moisture, snow, groundwater, and surface water. The MCR approach has78

been applied to river basins within Europe, Asia, North America, and Aus-79

tralia (Hirschi et al., 2006, 2007), demonstrating that the MCR approach can80

successfully estimate TWS on a monthly time step after comparing estimates81

with independent measures of TWS including soil moisture, groundwater lev-82

els, and snow depths. More recent work by Zeng et al. (2008) proposed a83

modification to the MCR approach where, instead of equating water balance84

equations for the surface and atmospheric systems, the surface water balance85

equation is solved directly by using observations of precipitation and stream86

discharge along with estimates of evaporation derived from climate reanalysis87

to quantify changes in TWS. This approach, termed the Precipitation, Evap-88
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otranspiration, and Runoff (PER) method, was shown to be more robust in89

estimating TWS for the Amazon Basin and the Mississippi Basin when com-90

pared to the MCR approach and validated against independent estimations91

of TWS components (Zeng et al., 2008). Details of the PER method and92

how it compares to the more commonly used MCR method are provided in93

the Methodology Section of this paper.94

One of the major challenges in applying a water balance method is quan-95

tifying evapotranspiration at a regional spatial scale. The North American96

Regional Reanalysis (NARR) product is considered to be best of the renalysis97

datasets, in part because it has an improved land surface model (Ek et al.,98

2003; Ruiz-Barradas and Nigam, 2006). Another possible means for quanti-99

fying evapotranspiration is using remote sensing products. This approach is100

promising, although it requires calibrate of the remote sensing evaportran-101

spiration estimates based on local conditions (Ferguson et al., 2010), and it102

is uncertain if remote sensing observations of evaporation will be effective103

at closing the water balance (Sheffield et al., 2009). Future research would104

be required to address the benefit of remote sensing derived evapotranspi-105

ration estimates compared to NARR evaporation estimates. Despite the106

uncertainty of evapotranspiration estimates, a comparative analysis of the107

estimated evapotranspiration from different climate model and reanalysis108

datasets (ERA40, NCEP2, NARR, and SLand) in the PER model suggested109

that evapotranspiration estimates have a small variation relative to difference110

between observed precipitation and streamflow, therefore capturing variation111

in precipitation and streamflow is most important for estimating the rate of112

change in TWS (Zeng et al., 2008).113
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In this paper we use the PER method with NARR estimates of evap-114

otranspiration to understand how water resources within South Carolina115

responded during and following the 1998-2002 period of drought. Using116

observational data from streamflow and precipitation monitoring networks117

along with estimations of evaporation from climate model reanalysis prod-118

ucts, we estimated rate of change in TWS on a monthly time step for 54 sub-119

watersheds where stream inflow and outflow were monitored for the period120

1998-2007. The sub-watersheds were defined using geospatial data describ-121

ing the terrain, hydrography, and streamflow gaging network and account122

for 60% of the surface area within the state. We then compared estimates of123

rate of change in TWS obtained using the PER method with groundwater124

levels in the state to determine how both measures of water storage varied125

during and following the period of drought.126

The change in TWS measured from GRACE observations, while being127

a good source for independent validation of the estimated change in ter-128

restrial water storage derived from various land surface hydrologic models129

(Wahr et al., 2004), is not appropriate for this study do to the scale of the130

sub-watersheds used. Swenson et al. (2003) showed that the accuracies of131

measuring monthly change in TWS from GRACE are better than 1 cm of132

equivalent water thickness with spatial extent of 4.0 × 105 km2 or larger,133

and these accuracies increase with the increase in the spatial extent. Given134

that the total area of South Carolina is one-fourth the recommended area135

for application of GRACE data, we could not justify the use of GRACE as136

a means for validating our analysis estimates of change in TWS.137

Following a brief description of the study area, we next describe our138
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methodology for the study including a more detailed description of (1) the139

water balance method on which this analysis is based, focusing in particular140

on how the PER method compares to the more common MCR method for141

estimating rate of change in TWS and (2) the datasets and data preparation142

steps carried out as a part of the analysis. We next discuss the resulting143

estimates of the rate of change in TWS for the state summarized in space144

and time, including a comparison between rate of change in TWS estimates145

and observed groundwater levels. Finally we conclude with a discussion of the146

benefits and weaknesses of the PER approach for estimating rate of change147

in TWS, and suggest future directions needed to improve the approach as a148

tool for regional-scale water resources management.149

Study Area150

South Carolina is located in the Southeastern United States and has151

an area of 82,930 km2 (32,020 mi2) from latitude 32◦02′N to 35◦13′N and152

longitude 78◦32′W to 83◦21′W (Figure 1). South Carolina receives on average153

1220 mm (48 in) of precipitation annually, mostly in the form of rainfall.154

Precipitation over the state is fairly consistent for different seasons, although155

the coastal plain region of the state does receive more precipitation in the156

summer relative to other seasons, while the remaining parts of the state157

generally receive more precipitation in the spring months. South Carolina158

has hot and humid summer months with daytime temperatures averaging159

between 30-34 ◦C (86-93 ◦F) for most of the state. In winter months, daytime160

temperatures in the coastal plain average 16 ◦C (60 ◦F) and decrease as one161

travels inland. The Savannah, Pee Dee, Santee, and Edisto Rivers are the162
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largest rivers within the state, and each of these rivers plays a major role163

in agricultural and industrial practices. All but one of the rivers in South164

Carolina are shared with neighboring states. The exception is the Edisto165

River whose entire watershed is within the state boundaries (Badr et al.,166

2004).167

South Carolina has three distinct aquifer systems (Figure 1): the Pied-168

mont and Blue Ridge crystalline rock aquifers in the northwestern portion169

of the state, the Southeastern Coastal Plain aquifer system in the central170

part of the state, and the Surficial aquifer system in the coastal region of the171

state (Miller, 1990). The Piedmont and Blue Ridge crystalline rock aquifers172

consist of bedrock overlain by unconsolidated material. While the overall173

hydraulic characteristics of the aquifer are similar, there is considerable lo-174

cal variability due to heterogeneous rock types in the region. Groundwater175

obtained from the aquifer is used for public supply, commercial uses, and176

agricultural purposes within the upper region of the state (Kenny et al.,177

2009). The Southeastern Coastal Plain aquifers in South Carolina consist178

of sand or highly permeable limestone as well as confining layers composed179

of clay, silt or low permeable limestone that slow the infiltration of water180

to the aquifer system. The aquifers are primarily recharged by diffuse deep181

drainage and discharge into the upper or lower coastal plain rivers (Aucott182

and Speiran, 1985).The Surficial aquifer system is unconfined and water en-183

tering the aquifer system is discharged quickly as baseflow to streams. This184

aquifer in particular is prone to saltwater intrusion during periods of drought185

because it extends seaward under the Atlantic Ocean. It is important to note186

that, although South Carolina has groundwater resources, 95% of the fresh-187
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water used in the state comes from surface water rather than groundwater188

resources (Kenny et al., 2009).189

Methodology190

Model Description191

Terrestrial Water Storage (TWS) can be expressed by a water balance192

equation for the terrestrial portion of the hydrologic cycle193

∂TWS

∂t
= P − E + Rin −Rout (1)

where TWS represents Terrestrial Water Storage, P is precipitation, E194

is evapotranspiration, and Rin is streamflow entering a sub-watershed and195

Rout is streamflow exiting that same sub-watershed. The more traditional196

Moisture Convergence minus Runoff (MCR) approach used within the cli-197

mate science community for solving Equation 1 uses a second water balance198

equation for the atmospheric portion of the hydrologic cycle199

∂W

∂t
= −∇H ·Q− (P − E) (2)

where W is storage of water as vapor within the column of air above the200

watershed, ∇H is the horizontal divergence operator, and Q is the integration201

of the water vapor flux over the column (Seneviratne et al., 2004). The202

method assumes that the rate of change in liquid and solid water in the air203

column, as well as the horizontal transport of liquid and solid water, can204

be neglected. Terrestrial water storage is estimated by equating Equation205

1 and Equation 2 and averaging over space and time, which results in the206

elimination of the P − E term and gives207
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{
∂TWS

∂t

}
= −{∇H ·Q} −

{
∂W

∂t

}
− {R} (3)

where brackets around the term signifies that it is averaged temporally and a208

bar over the term signifies that it is averaged spatially. One disadvantage of209

the MCR approach is that it is limited to very large river basins with areas210

of at least 105 km2 because the estimation can become unreliable for smaller211

units due to inaccurate estimates of evaporation (Yeh et al., 1998).212

In contrast to the MCR method, in the PER method P and R are ob-213

served and E is estimated using a land surface model so that Equation 1214

becomes215

∂TWS

∂t
= Pobs − Eest −Robs (4)

where the subscript “obs” signifies that the term is taken from observational216

records and “est” signifies that the term is estimated using a model. The217

terms in Equation 4 can be spatially and temporally averaged in a manner218

similar to Equation 3 to yield Equation 5.219 {
∂TWS

∂t

}
= {Pobs} − {Eest} − {Robs} (5)

One disadvantage of the PER method is that it requires streamflow observa-220

tions, which are only available for select locations. Furthermore, the method221

requires both stream inflow and outflow observations for sub-watersheds, and222

large gaps in monitoring of either of these flows means that PER approach223

cannot be applied.224

Previous work applying both the MCR and PER methods for water bal-225

ance calculations has noted a systematic bias in E estimated from reanalysis226

products when compared to P −R calculated from observed data (see Zeng227

10



et al., 2008 for a complete discussion). Zeng et al. (2008) used a correction228

factor to adjust the estimated E values so that the long term average of229

P −E∗−R equals zero over the entire study region, where E∗ is a corrected230

evapotranspiration term such that E∗ = E + c where c is the correction231

factor. We determined the value of c for this study by setting the overall232

change in water storage for all 54 sub-watersheds and all 120 months during233

the study period to zero234

54∑
i=1

120∑
j=1

{Pobs i,j} −
(
{Eest i,j}+ c

)
− {Robs i,j} = 0 (6)

where i is a sub-watershed and j is a month during the study period. Equa-235

tion 6 was solved for c which was then used to calculate a corrected evapo-236

transpiration rate E∗est. This corrected evapotranspiration estimate was then237

used in Equation 7 to estimate rate of change in TWS with respect to time.238 {
∂TWS

∂t

}
= {Pobs} − {E∗est} − {Robs} (7)

The assumption of no change in water storage over the ten year period is239

difficult to validate and may not be correct if portions of the study area240

experienced significant groundwater pumping over the period of analysis.241

The results of this analysis should be interpreted in light of this simplifying242

assumption.243

We solved a discrete approximation of Equation 7 on a monthly time244

step for each sub-watershed identified in the state where there was a record245

of stream inflow and outflow. The procedure used to construct these sub-246

watersheds and the data used to quantify {Pobs}, {Eest}, and {Robs}, are247

described in the following section.248

11



Data Preparation249

The National Hydrography Dataset (NHD) provides a geographic rep-250

resentation of hydrologic features on the land surface in the United States251

(USEPA and USGS, 2005) (Table 1a). The NHD includes feature classes252

describing the location of streams, lakes, reservoirs, and other surface wa-253

ter bodies. An extension to the NHD named the NHDPlus adds catchment254

features for each river reach to the 1:100,000 scale version of the NHD. The255

catchments are generated using the National Elevation Dataset (NED) and256

terrain processing algorithms to estimate the drainage area for each NHD257

Flowline feature (Johnston et al., 2009). The NHD also includes information258

regarding the connectivity of river features that enables network-based flow259

tracing in upstream and downstream directions.260

The procedure used to calculate the sub-watersheds in our analysis (Fig-261

ure 1) was to first use linear referencing to locate active streamflow moni-262

toring stations during the study period along the NHD stream network. We263

then wrote an algorithm that begins at the most downstream reach in the264

NHD Flowline feature class for each river basin in the state and “climbs” the265

network in the upstream direction in order to identify the next downstream266

monitoring station for each reach within the study area. With this informa-267

tion, and because there is a 1-1 relationship between reaches and catchments268

in the NHDPlus dataset, we were able to identify and then dissolve catch-269

ments within the study region that had the same downstream monitoring270

station. This data processing resulted in 54 sub-watersheds ranging in size271

from 1.20 to 3,350 km2 for which stream inflow and outflow have been ob-272

served for the period 1998-2007.273
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Precipitation was estimated by using the Parameter-elevation Regressions274

on Independent Slopes Model (PRISM) dataset (Gibson et al., 2002) (Table275

1b). The precipitation data used in this analysis have a spatial resolution276

of approximately 4 km (2.5′) and a temporal resolution of one month. The277

term precipitation in context of the PRISM dataset means all forms of wa-278

ter that reach the earth from the atmosphere (i.e., rainfall, snow, freezing279

rain, hail, frost, or dew). Of these, rainfall contributes the majority of water280

in South Carolina, although it is not uncommon for northern parts of the281

state to experience snow or freezing rain. Evapotranspiration rates were esti-282

mated by using data from the North American Regional Reanalysis (NARR)283

program (Mesinger et al., 2006). The evaporation data from NARR have284

a spatial resolution of 32.5 km (20′) and have a temporal resolution of one285

month. The reanalysis data products are produced by running a state-of-286

the-art climate model and assimilating historical weather observational data287

to estimate historical weather and hydrologic conditions.288

Streamflow data within the state are collected by the United States Ge-289

ologic Survey (USGS) at more than 170 monitoring stations. We identified290

152 USGS monitoring stations with an adequate daily streamflow record291

during the period of analysis (1998-2007). The streamflow data were down-292

loaded using tools from the Consortium of Universities for the Advancement293

of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS)294

(Maidment, 2008; Goodall et al., 2008; Horsburgh et al., 2009). Groundwater295

level data from USGS wells were assembled also using the CUAHSI HIS for296

comparison purposes, as described in the discussion section of this paper.297

Box and whisker plots of average monthly conditions for all sub-watersheds298
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show the distribution of precipitation, evapotranspiration, and streamflow299

values for the study period when viewed on both an annual scale (Figure 2)300

and on a seasonal scale (Figure 3). In the plots, the box represents the 25th,301

50th and 75th percentiles of the distribution while the whiskers represent the302

minimum and maximum values. Outliers identified as data values more than303

1.5 times larger or smaller of the Interquartile Range (IQR) are represented304

in the plots as “+” marks. Seasonal variability of streamflow in particular305

provides clear evidence of the 1998-2002 drought in spring, summer, and fall306

months. During these periods, the entire distribution of streamflow values307

was lower compared to the distribution of streamflow values during the years308

following the drought.309

We organized the geospatial and temporal data used in the analysis into310

the spatio-temporal data model described in Goodall and Maidment (2009).311

In this data model, the landscape is represented as a set of control volumes312

(sub-watersheds in this case) and geospatially-referenced hydrologic time se-313

ries (streamflow time series and interpolated surfaces of precipitation and314

evapotranspiration in this case). Each control volume is related to one or315

more time series that describe either an inflow or outflow for that control316

volume through time. Because control volumes and time series are georefer-317

enced, it is possible to determine the mass flux into and out of each control318

volume through time. For example, the precipitation and evaporation fields319

were averaged over watersheds areas as320

{P,E} =
1

T

∫
{p, e}dA (8)

where P is the precipitation into a watershed and E is the evapotranspiration321

exiting a watershed and both are expressed in flow rate dimensions [m3 s−1],322
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A is the area of a given watershed [m2], p is monthly precipitation and e is the323

monthly evapotranspiration for the sub-watershed accumulated over the time324

period T [s] and expressed in length dimensions [m]. The organization of the325

data within the data model facilitated our ability to write code to estimate326

rate of change in TWS on a monthly time step using a discrete approximation327

of Equation 7 to estimate changes in TWS for all sub-watersheds identified328

in the study region.329

Results and Discussion330

Annual Variations of Rate of Change in TWS331

Box and whisker plots of average monthly rate of change in TWS show332

the distribution of these values for the study period on an annual scale (Table333

2, Figure 2). Figure 2 shows that the median rate of change for most of the334

years in the analysis was negative. Stated differently, this means that sub-335

watersheds in the state tended to lose water during the majority of the years336

of the study period, but gained water at a high rate during a few wet years.337

Figure 2 also shows that the median rate of change in TWS increased for each338

of the drought years. That said, the rate remained negative during the early339

period of the drought meaning that the region was still losing water during340

this period of time, but doing so less rapidly until the end of the drought341

(2001 and 2002) when the sub-watersheds actually began to gain water.342

This result of a positive rate of change in TWS for the last two years of343

the drought was somewhat surprising, but could possibly be explained by a344

reduction of in stream discharge due to the drought. Because net streamflow345

decreased during the drought years (R ↓), P − E became more significant346
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in estimating the rate of change in TWS. From a mechanistic perspective, a347

possible explanation for this result is a decrease in the soil moisture caused348

by the drought. Because of this decrease in soil moisture, a greater portion of349

P −E infiltrated and recharged groundwater resources and therefore did not350

result in runoff and increased stream discharge rates. Therefore, during this351

period ∆TWS/∆t actually increased because of an increase in the portion of352

P −E that contributed to recharge rather than runoff. In the years following353

the drought (2003-2007), the sub-watersheds were wetter, in general, so a354

greater portion of P −E became runoff and did not contribute to increasing355

the TWS.356

Seasonal Variations of Rate of Change in TWS357

Box and whisker plots of average monthly rate of change in TWS show358

the seasonal distribution of these values for the study period on an annual359

time scale (Table 3; Figure 3). While the winter and summer seasons showed360

more variability between different years of the study period, the fall season361

was in general a period of positive ∆TWS/∆t and spring was a period of362

negative ∆TWS/∆t. This result was expected because fall months tend363

to be a period of aquifer recharge in the state (measured by increases in364

groundwater levels, as shown later in this section), whereas spring months365

tend to be, in general, a period when groundwater levels decrease in large366

part to higher evapotranspiration rates.367

The rate of change in TWS for drought years compared to the non-368

drought years showed different patterns relative to one another. One common369

trait was an increase in ∆TWS/∆t for each year of the drought. For the370

spring and summer months, although the rate of change in ∆TWS/∆t in-371
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creased, it remained negative or close to zero. We suspect that this is a result372

of a loss of TWS during the drought so that in later years of the drought,373

TWS was low so ∆TWS/∆t approached zero. In the fall months, there is no374

clear pattern in ∆TWS/∆t between drought and non-drought years. This375

is likely due to the fact that fall months experienced near normal precipi-376

tation rates. In the winter months during the drought years, there was a377

large variation in the rate of change in TWS compared to the non-drought378

years. The winter period of the drought years also had a large variation in379

precipitation, which would explain the large variation in TWS change rates.380

However, the 75th percentile for precipitation in the winter months was inline381

with that of months following the period of drought, and the 75th percentile382

for ∆TWS/∆t during the winter months of the drought years was lower383

compared to non-drought years. A possible explanation for this result is a384

higher antecedent soil moisture condition in the winter months, due to the385

proceeding fall season that was found to be the primary period of increases386

in TWS.387

Spatial Variations in Annual and Seasonal Rate of Change in TWS388

The spatial distribution of annual and seasonal rate of change in terres-389

trial water storage in the sub-watersheds is shown in Figure 4. For the annual390

plot, the monthly ∆TWS/∆t estimates were averaged for all 12 months, and391

for the seasonal plots, the monthly ∆TWS/∆t estimates were averaged for392

the three months within each season. The annual estimation showed both393

general patterns of rate change in TWS for sub-watersheds above the Pied-394

mont and Blue Ridge aquifers and the Southeastern Coastal Plain aquifers.395

Sub-watersheds above the surficial aquifers in general showed a negative an-396
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nual rate change in TWS. This pattern was expected because P −E will con-397

tribute more to recharge aquifers in the inland portion of the state relative398

to stream discharge. In contrast, groundwater will be a larger contributor to399

streamflow in the coastal region of the state, meaning stream discharge will400

be larger than P − E and, as a result, ∆TWS/∆t will tend to be positive.401

For sub-watersheds in Blue Ridge and Piedmont region, as well as the South-402

eastern Coastal Plain regions, as expected, the fall months showed a positive403

rate of change in terrestrial water storage for most of the sub-watersheds,404

while spring months showed a deficit for most of the sub-watersheds.405

Within these general trends there was some variability. For example,406

one sub-watershed near the coast gained water consistently throughout the407

year at a rate that exceeded 25 m3 s−1. Four sub-watersheds distributed408

throughout the study region lost water during all four seasons, two at a rate409

that exceeded 100 m3 s−1. There are many possible reasons for these sub-410

watersheds having abnormal TWS change rates. One possible explanation is411

that the sub-watersheds have internal surface water storage (i.e., a reservoir)412

that alters its ∆TWS/∆t from neighboring sub-watersheds. For example413

sub-watersheds with reservoirs may have ∆TWS/∆t < 0 because they re-414

leased water during drought years that was stored prior to the drought. If415

a reservoir stores water, the ∆TWS/∆t increases because Qin > Qout and416

therefore R < 0. When the reservoir later releases water, the ∆TWS/∆t417

decreases because Qout > Qin, and therefore R > 0. For sub-watersheds418

where reservoirs must be accounted for rate of change in TWS, informa-419

tion is needed about reservoir volume through time and how the reservoir420

released water through time. Three of the sub-watersheds with negative421
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annual rate of change in TWS for the study period are near cities in the422

study region: Charlotte, North Carolina; Charleston, South Carolina; and423

Augusta, Georgia. Another possible explanation, therefore, is that there is424

significant surface water diversion for public or industrial water use in these425

regions of the state. Both of these examples suggest that human influences426

could be responsible for abnormal rate of change in TWS rates for the study427

region. Future work that includes other datasets related to water use for428

human and industrial purposes is needed to test this hypothesis.429

Comparison of Cumulative Rate of Change in TWS Estimates with Observed430

Groundwater Levels431

The relationship between cumulative ∆TWS/∆t and the groundwater432

level (GWL) provides a means for validating the PER method for calculating433

rate of change in TWS for sub-watersheds where groundwater is a significant434

portion of the TWS and there is no substantial groundwater pumping. We435

compared the estimates of cumulative ∆TWS/∆t with GWL for eight sub-436

watersheds within the state where a groundwater monitoring station was437

in proximity to the sub-watershed (Figure 5). Because TWS is a collective438

term that includes groundwater storage in addition to the surface storage and439

soil moisture storage, we expected ∆TWS/∆t to be correlated with GWL.440

However, other factors such as groundwater pumping, surface water storage441

(reservoirs), surface water diversions for public water supply or industrial442

water use, or simply a disconnect between surface water and groundwater443

resources could impact the two variables and remove any correlation between444

them. Therefore, we expected some sub-watersheds to show clear correlation445

between ∆TWS/∆t and GWL, while at the same time we expected other446
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sub-watersheds to show no correlation. In some ways, this analysis is most447

helpful in identifying sub-watersheds where GWL and cumulative ∆TWS/∆t448

do not match because it suggests some other factor, possibly anthropogenic,449

may be altering the local water budget for that particular sub-watershed.450

Comparison between cumulative ∆TWS/∆t and GWL for eight sam-451

ple sub-watersheds (Figure 6) showed that sub-watersheds A, C, D and F,452

located above the surficial aquifers showed a clear correlation between cu-453

mulative ∆TWS/∆t and GWL. On the other hand, sub-watersheds B, E, G454

and H did not show a clear correlation. In some cases, this lack of correla-455

tion appeared to be due to a phase shift between cumulative ∆TWS/∆t and456

GWL. This phase shift may be related to the travel time through the soil457

to the aquifer including parameters such as the depth from the land surface458

to the saturated soil and the characteristics of the soil column (hydraulic459

conductivity, antecedent soil moisture, etc.). Sub-watershed B’s groundwa-460

ter level pattern appeared to be influenced by pumping, and there is some461

documentation on pumping in this sub-watershed (USDI and USGS, 2009).462

It is possible that this pumping affected the correlation between GWL and463

cumulative ∆TWS/∆t. In other cases, in particular for sub-watersheds E,464

G, and H, ∆TWS/∆t showed an increase during fall months that was not465

present in the GWL observations. Again, further work is needed to under-466

stand the specific characteristics and factors present in these sub-watersheds467

in order to explain divergence between ∆TWS/∆t and GWL. The seasonal468

variations were also visible in this analysis with the tendency of the ground-469

water level to rise in the fall and winter months and to decrease in spring470

and summer months, as expected.471
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When viewed as a time series with rate of changes in TWS accumu-472

lated during the year (Figure 7), it is possible to visualize the increase or473

decrease in ∆TWS/∆t during each year of the period of analysis. Sub-474

watersheds C, D, and G included data for the entire study period, while the475

other sub-watersheds included data for at least two years of the study period.476

Sub-watershed C showed evidence of the drought in 1998, but also signs of477

a drought in 2003. The other years of record show a general decrease in478

water storage during the year, but not at the rate experienced during the479

years 1998 and 2003. Sub-watershed D showed evidence of the drought pri-480

marily in 1998, but also in 1999 and 2003. The other years showed less of481

a decline in cumulative ∆TWS/∆t and in 2002 the analysis estimated that482

∆TWS/∆t increased within the sub-watershed. Sub-watershed G showed an483

increasing ∆TWS/∆t for most years in the study period, but also showed484

evidence of the drought in 1998 and 2003 because there was little or no in-485

crease in ∆TWS/∆t during these years, whereas other years in the study486

period showed an increase in ∆TWS/∆t throughout the year. One pattern487

of interest is the increase in ∆TWS/∆t that occurred directly following the488

drought in 2002. This increase in ∆TWS/∆t is evident from the time series489

plots for sub-watersheds B, E, G, and H and match increases in the ground-490

water level that also occurred during this time period. What is also clear491

from this plot is the marked difference in how each sub-watershed responded492

during and following the period of drought. Some sub-watersheds gained493

∆TWS/∆t during drought years, others lost water. Some sub-watersheds494

gained ∆TWS/∆t in years following the drought, others lost water. This495

provides evidence of the variability of hydrologic systems that are under in-496
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fluences from geologic, climate, human, and other dimensions.497

Conclusion498

The PER water balance approach presented by Zeng et al. (2008) was499

used to synthesize existing hydrologic and geographic datasets in our study500

in order to estimate rate of change in terrestrial water storage (TWS) for sub-501

watersheds within South Carolina. Estimates of changes in TWS through502

time derived using the PER method show evidence of the drought in South503

Carolina and how the drought impacted different regions of the state. Com-504

parison of estimated rates of TWS change with observed groundwater level505

changes in the region over the same period of time provided confidence in the506

PER method because the rate of change in TWS estimates follow seasonal507

and annual variations in groundwater levels for many of the sub-watersheds508

considered in this work. Although systematic biases in evapotranspiration509

rates noted in Zeng et al. (2008) limit the approach to quantifying relative510

rate of changes in TWS, the results from the PER method can be analyzed511

to identify how different regions of the state responded during and following512

the period of drought, information that may prove useful in managing the513

state’s water resources.514

We found that the method was most valuable in its ability to identify515

sub-watersheds in the state that do not follow general spatial and temporal516

variations. There could be many factors at play that result in these abnor-517

malities. In some cases, there could be an internal storage (e.g., reservoir)518

that is altering storage rates relative to neighboring sub-watersheds. In other519

cases, there could be an unaccounted source or sink for water within the sub-520
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watershed. For example, there may be an inter-watershed transfer of water521

or a diversion of surface water for public industrial water use purposes. These522

abnormalities, therefore, suggest that there is a human dimension to the wa-523

ter balance for that particular sub-watershed. Future work should further524

investigate this finding by gathering other water use data in an attempt to525

close the water balance for these sub-watersheds.526

It should be noted that the hydrological data inputs used in the study have527

different levels of uncertainty, and this uncertainty impacted the results of528

this analysis. The most uncertain flux in the water balance is almost certainly529

evapotranspiration. Although the correction of evaporation is incorporated,530

the evaporation estimates in particular, being generated by a continental531

scale weather model may not capture true evaporation rates during the study532

period. However, evaporation is one of the most difficult hydrologic fluxes533

to quantify at the river basin scale as its rate depends on quantifying soil534

moisture through time (Lu et al., 2003; Rodell et al., 2004). Future work535

should be directed at better quantifying evaporation during this time period536

by using a regional hydrologic model capable of simulating soil moisture on537

a daily or sub-daily time scale and remote sensing of evapotranspiration.538

For example, an improvement over this work would be to use groundwater539

levels to estimate recharge rates (Healy and Cook, 2002) that then can be540

incorporated directly into the water balance to estimate water storage in541

the unsaturated and surface environments. Another potential means for542

improving this work would be to use remote sensing derived estimates of543

evapotranspiration to quantify this flux in place of, or in addition to, model544

derived estimates for the water balance calculations (Swenson et al., 2003).545
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Table 1: Summary of geospatial and hydrologic time series data used in the study.

(a) Geospatial data

Description Source Data Type

Hydrography flow lines National Hydrography Dataset Vector (Polyline)
Flow line catchments National Hydrography Dataset Plus Vector (Polygon)
USGS streamflow gages National Hydrography Dataset Plus Vector (Point)

(b) Hydrologic time series data

Name Source Measurements Units Data Type Grid Size

Precipitation PRISM Group Dataset m3 s−1 Raster 4km
Evaporation North American Regional m3 s−1 Raster 32.5km

Reanalysis (NARR) program
Streamflow U. S. Geological Survey m3 s−1 Vector (Point) -
Groundwater level U. S. Geological Survey m from surface Vector (Point) -

1

Table 2: Annual rate of change in terrestrial water storage (m3 s−1) for all sub-watersheds

Year Avg STD Min 25% Med 75% Max

1998 -26.9 25.0 -63.0 -48.9 -15.3 -10.7 8.8
1999 -6.5 13.9 -28.2 -12.9 -7.4 -1.3 24.0
2000 -4.4 17.9 -28.8 -22.4 -1.0 4.9 22.5
2001 -2.7 11.9 -33.2 -6.3 0.3 3.8 12.4
2002 7.0 12.8 -16.0 -0.3 10.2 15.6 23.8
2003 -16.2 18.8 -45.8 -30.7 -13.1 -0.4 8.7
2004 -4.0 15.5 -36.5 -10.2 -2.0 3.4 26.4
2005 -10.3 18.7 -52.7 -18.2 -9.9 6.1 13.6
2006 -0.9 20.3 -23.0 -17.7 -5.4 9.3 46.1
2007 -3.2 21.6 -29.0 -20.0 -3.1 6.8 43.1

1
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Table 3: Seasonal rate of change in terrestrial water storage (m3 s−1) for all sub-watersheds

Spring (March to May) Summer (June to August)

Year Avg STD Min 25% Med 75% Max Avg STD Min 25% Med 75% Max

1998 -56.3 9.1 -63.0 -61.5 -60.0 -52.9 -45.9 -22.0 15.8 -40.2 -26.7 -13.3 -12.9 -12.6
1999 -17.3 9.4 -28.2 -20.2 -12.2 -11.9 -11.5 -8.8 6.1 -14.7 -12.0 -9.3 -5.9 -2.5
2000 -21.9 8.8 -28.8 -26.9 -25.0 -18.5 -11.9 0.0 2.1 -2.2 -1.0 0.2 1.1 2.0
2001 -11.8 22.9 -33.2 -23.8 -14.5 -1.0 12.4 -2.0 5.9 -8.4 -4.6 -0.8 1.2 3.2
2002 -5.0 13.1 -16.0 -12.3 -8.5 0.5 9.5 6.2 16.3 -8.3 -2.6 3.1 13.5 23.8
2003 -25.0 22.8 -45.8 -37.1 -28.4 -14.5 -0.6 -31.9 13.7 -41.9 -39.7 -37.5 -26.9 -16.2
2004 -14.4 5.6 -18.4 -17.6 -16.8 -12.4 -8.0 9.4 14.9 -1.6 0.9 3.4 14.9 26.4
2005 -26.4 23.2 -52.7 -35.2 -17.8 -13.3 -8.7 -14.1 5.6 -19.5 -17.0 -14.4 -11.4 -8.3
2006 -19.6 3.0 -23.0 -20.7 -18.4 -17.9 -17.5 2.0 19.9 -19.2 -7.0 5.2 12.7 20.1
2007 -24.5 7.2 -29.0 -28.6 -28.2 -22.2 -16.2 4.2 6.8 -3.2 1.2 5.7 7.9 10.1

Fall (September to November) Winter (December to February)

Year Avg STD Min 25% Med 75% Max Avg STD Min 25% Med 75% Max

1998 -7.9 6.4 -15.3 -10.1 -4.8 -4.3 -3.7 -21.5 33.8 -57.9 -36.6 -15.3 -3.3 8.8
1999 4.6 16.8 -5.5 -5.0 -4.6 9.7 24.0 -4.7 16.9 -24.0 -10.9 2.2 5.0 7.7
2000 4.0 22.7 -21.8 -4.3 13.2 16.9 20.7 0.1 23.5 -24.3 -11.1 2.1 12.3 22.5
2001 0.3 5.5 -5.6 -2.2 1.3 3.3 5.3 2.5 3.8 0.2 0.3 0.4 3.6 6.8
2002 16.0 5.8 11.0 12.9 14.8 18.5 22.3 10.8 8.0 2.3 7.1 11.9 15.1 18.2
2003 -7.7 13.1 -19.5 -14.7 -9.9 -1.8 6.3 -0.3 9.2 -9.7 -4.7 0.2 4.4 8.7
2004 -11.8 21.6 -36.5 -19.4 -2.4 0.5 3.4 0.9 5.9 -3.7 -2.4 -1.1 3.2 7.5
2005 -1.1 23.1 -27.8 -8.4 10.9 12.3 13.6 0.4 10.1 -11.2 -2.6 5.9 6.3 6.6
2006 22.0 20.9 8.6 10.0 11.3 28.7 46.1 -8.1 4.9 -13.7 -10.0 -6.3 -5.4 -4.5
2007 6.4 15.0 -3.0 -2.3 -1.5 11.1 23.6 1.0 36.4 -20.2 -20.0 -19.9 11.6 43.1

1

32



Figure 1: Map of the study area showing gaged sub-watersheds, aquifers (a) Piedmont

and Blue Ridge aquifers (b) Southeastern Coastal Plain aquifers (c) Surficial aquifers
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Figure 2: Annual variations (box with 25th, 50th, and 75th percentiles, whiskers with

minimum and maximum values, and outliers observations as “+” marks) of precipitation,

evaporation, streamflow and ∆TWS/∆t in the sub-watersheds.
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Figure 3: Seasonal variations (box with 25th, 50th, and 75th percentiles, whiskers with

minimum and maximum values) of precipitation, evaporation, streamflow and ∆TWS/∆t

in the sub-watershedsn) of precipitation, evaporation, streamflow and ∆TWS/∆t in the

sub-watersheds.
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Figure 4: Spatial variation of rate of change in terrestrial water storage in the sub-

watersheds.

Figure 5: Location of the focus sub-watersheds in South Carolina.
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Figure 6: Relationship between cumulative rate of change in cumulative terrestrial water

storage (averaged over same month from 1998-2007) and groundwater levels (1998-2007)

in the sub-watersheds.
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Figure 7: Long term relationship between the yearly cumulative rate of change in terrestrial

water storage and groundwater levels in the sub-watersheds.
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