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Abstract 3 

 2 

Component software architectures offer an alternative approach for building large, 4 

complex hydrologic modeling systems. In contrast to more traditional software 5 

paradigms (i.e. procedural or object-oriented approaches), using component-based 6 

approaches allows individuals to construct autonomous modeling units that can be linked 7 

together through shared boundary conditions during a simulation run.  One of the 8 

challenges in component-based modeling is designing a simple yet robust means for 9 

authoring model components.  We address this challenge by presenting an approach for 10 

efficiently creating standards-based, process-level hydrologic modeling components. 11 

Using this approach, a hydrologic process is implemented as a modeling component by 12 

(1) authoring a configuration file that defines the properties of the component and (2) 13 

creating a class with three methods that define the pre-run, runtime, and post-run 14 

behavior of the modeling component.  We present the design and implementation of this 15 

approach, which we call the Simple Model Wrapper (SMW), and demonstrate how it can 16 

be applied to create an Open Modeling Interface (OpenMI)-compliant modeling 17 

component for a basic hydrologic process. 18 
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1. Introduction 21 

Hydrologic models are typically built to address isolated parts of the overall 22 

hydrologic cycle, making it challenging to answer science or management questions that 23 

require process representations implemented within different models (e.g. 24 

groundwater/surface water systems or watershed/estuary systems) (Scholten et al. 2007).    25 

This has resulted in attempts to “hard-code” two or more models together, or to extend 26 

models beyond their original scope by including addition subroutines or packages 27 

(Sophocleous and Perkins 2000).  Neither of these approaches serves as an adequate long 28 

term solution.  In the former approach, the developers’ intent is usually to satisfy a 29 

unique study or application, while in the latter approach, it becomes increasingly difficult 30 

for one model to maintain state-of-the-art algorithms for a multidisciplinary system.  A 31 

more generic approach for coupling hydrologic and environmental models across 32 

discipline boundaries is needed.    33 

Component-based modeling offers an alternative approach for constructing 34 

hydrologic models that emphasize the decomposition of a system into functional 35 

components that communicate via standard interfaces (Argent 2004).  In a component-36 

based modeling paradigm, processes are designed as computational units that can plug-37 

and-play with other computational units in a modeling system (Allan et al. 2006).   Each 38 

component must have a standard means for communicating with other components 39 

within the modeling system so that the overall modeling system can be re-configured 40 

through the introduction of new components or the “swapping out” of existing ones.  The 41 

model developer is able to define the overall composition of model components using 42 
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unique system representations, which is ideal for modeling complex systems that involve 43 

multi-scale and multidisciplinary components (Kennen et al. 2008).  44 

Within the water domain, several component-based modeling systems are in 45 

development.  These systems, which are briefly reviewed in the following section, share 46 

the idea of a standard interface definition for modeling components designed to facilitate 47 

interaction between components during simulation runtime.  The modeling systems are 48 

often complex pieces of software designed by software engineers, sometimes making it 49 

difficult for modelers to contribute their own process representations in a simple and 50 

straight forward way.  Our vision for component-based modeling is as a new way for 51 

authoring open, transparent, and flexible hydrologic modeling systems.  In order to 52 

achieve this vision, there is a need to offer modelers an approach for implementing plug-53 

and-play components that enable them to easily and efficiently incorporate their own 54 

conceptualizations of hydrologic process routines into standards-based modeling 55 

components.  This paper presents such an approach that we call the Simple Model 56 

Wrapper (SMW). 57 

The following background section presents a brief introduction to component-58 

based modeling systems under development for environmental systems analysis, focusing 59 

specifically on the Open Modeling Interface (OpenMI) as a standard interface definition 60 

for modeling components.  We then present the proposed SMW approach for creating 61 

OpenMI-compliant process level modeling components. We demonstrate how the SMW 62 

can be used for hydrologic modeling through a case study where a hydrologic modeling 63 

routine, the Curve Number Method, is implemented as an OpenMI-compliant component.  64 
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Finally, we discuss the benefits and costs of using the SMW approach, and component-65 

based modeling in general, for modeling complex environmental systems.    66 

 67 

2. Background  68 

Component based modeling, has received increased focus in modern 69 

environmental modeling systems.  Argent et al. (2006) provides an overview of 70 

component modeling for environmental systems including efforts within the hydrologic 71 

community to redirect modeling focus toward the development of component models, as 72 

well as componentizing existing models.  The Community Surface Dynamics Modeling 73 

System (CSDMS), the Earth System Modeling Framework (ESMF), the Object Modeling 74 

System (OMS), and the Open Modeling Interface (OpenMI) are a few examples of 75 

component modeling approaches being developed within the environmental modeling 76 

community. 77 

The Community Surface Dynamics Modeling System (CSDMS) is a modeling 78 

environment built from free software modules that focuses on the prediction of sediment 79 

and material transport over various time and space scales  (Syvitski et al. 2004).  The 80 

objective is to encourage interdisciplinary modeling by coupling components and 81 

enabling developers to create models specific to individual studies.  The model developer 82 

interacts with three architectural elements when building models in CSDMS: Standard 83 

Utilities, Modules, and a Toolkit (Syvitski et al. 2004).   Standard utilities define data 84 

structure, graphics rendering, module connectors, and a web interface (Anderson et al. 85 

2004).  Module components are developed by modelers and represent the actual 86 

sedimentary computations.  The Toolkit is supplied to the modelers in order to aid in 87 
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module development, and consists of numerical solvers, grid generators, and automatic 88 

code generators. The CSDMS uses the Open Modeling Interface (OpenMI) standard to 89 

maintain runtime communication, and the Common Component Architecture (CCA) to 90 

facilitate high performance computing (Slingerland et al. 2008). 91 

The Earth System Modeling Framework (ESMF) is a multidisciplinary effort 92 

between Earth science modeling centers within the United States that aims to increase 93 

software reuse and model interoperability (Hill et al. 2004).  Components are defined by 94 

a physical domain, the process which they represent, or their scientific function (Collins 95 

et al. 2005).  Each component operates under the Fortran derived concept of “states” in 96 

which all components have one or more import and export states that enable modeling 97 

components to easily exchange data (Collins et al. 2005).  Most ESMF components are 98 

“gridded” meaning they simulate physical domains that can be represented by a regular 99 

or irregular computational grid.  This framework is most widely used for applications that 100 

require high performance computing, such as the atmospheric sciences for weather and 101 

climate modeling.   102 

The Object Modeling System (OMS) is developed by a collaborative effort 103 

between the United States Department of Agriculture- Agriculture Research Service 104 

(USDA-ARS) and partner agencies to resolve the lack of integrated hydrological models 105 

(Kralisch et al. 2005).  It  uses modern software principals, particularly object-oriented 106 

programming, to provide modelers with the ability to customize their models by 107 

combining individually compiled processes together into a modeling system (Kralisch et 108 

al. 2005).  An OMS model consists of multiple, independent modules that are coupled by 109 

a standard software interface.  These modules are further divided into system and 110 
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scientific components, which represent model building tools and physically-based 111 

computations, respectively.  The scientific component of a module represents the 112 

physical process that is being calculated, whereas system components are used to manage 113 

the coupling and execution of several scientific components.  Models are built from a 114 

combination of “system” and “scientific” components, and are joined together within the 115 

Netbeans (http://www.netbeans.org) runtime environment (Ahuja et al. 2005). 116 

   The Open Modeling Interface (OpenMI) is a component interface standard 117 

developed through the Water Framework Directive (Moore et al. 2005).  It differs from 118 

the previous modeling systems in that, while the other systems intend to be complete 119 

modeling environments, the primary aim of the OpenMI is to facilitate interoperability 120 

between otherwise independent environmental models (Gregersen et al. 2007). The 121 

OpenMI, therefore, is designed to serve as a communication standard for model 122 

interoperability (Moore and Tindall 2005) that could be adopted by each of the 123 

aforementioned modeling systems.  The CSDMS, in fact, uses the OpenMI in this 124 

capacity.  Additionally, the OpenMI Association Technical Committee (OATC) provides 125 

a Software Development Kit (SDK) and component configuration editor application 126 

(OpenMI Configuration Editor GUI) which allows modelers to use the OpenMI as the 127 

basis for a component-based modeling system.   128 

The OpenMI communication protocol consists of three fundamental concepts: a 129 

linkable component, an exchange item, and a link (Figure 1) (Brinkman et al. 2005).  A 130 

linkable component is an object that implements an OpenMI standard interface (e.g. 131 

ILinkableComponent).  Exchange items are objects communicated between components 132 

and are comprised of an element set and a quantity.  An element set defines the geospatial 133 
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objects for an exchange item whereas a quantity describes the variable for an exchange 134 

item including its units and unit dimensions (Gregersen et al. 2007).  Components can 135 

wrap databases, models, visualization routines, or any other computational resource 136 

(Gijsbers et al. 2005).  Links are used to couple components together and define the 137 

source and destination for exchange items transferred between them.  A single 138 

component can have multiple input and output exchange items.  An interlinked set of 139 

components is called a component composition and can be thought of as a "model" for a 140 

specific system.    141 

The OpenMI offers a foundation for component-based modeling within a loosely 142 

coupled structure that can supplement more tightly coupled modeling systems such as 143 

ESMF, CSDMS, and OMS.  The OpenMI, however, was primarily designed for 144 

wrapping legacy codes (Moore and Tindall 2005), making it difficult for modelers to use 145 

to create new process-level components in an efficient, straight forward manner. 146 

Modelers must understand OpenMI concepts at a fairly low level to wrap their own codes 147 

as OpenMI-compliant components.  The Simple Model Wrapper (SMW) is an attempt to 148 

abstract the details of the OpenMI from model developers in order to encourage the 149 

development of process-level model components that adhere to the OpenMI standard.  It 150 

allows these process-level components to be used alongside other OpenMI-compliant 151 

model components to model environmental systems.  The following section describes the 152 

SMW design, followed by a section that demonstrates an example application of the 153 

SMW for wrapping a hydrologic process. 154 

 155 

3. The Simple Model Wrapper  156 
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The Simple Model Wrapper (SMW) consists of two parts: (1) a configuration file 157 

that defines the metadata for a model component and (2) an abstract class with three 158 

“overridable” methods that a modeler is responsible for implementing.  This approach 159 

was selected to minimize the amount of code that must be written in order to create a new 160 

model component.  The configuration file for a SMW component, which is an eXtensible 161 

Markup Language (XML) file, defines the metadata properties of that component.   These 162 

properties are important because they determine, among other things, the inputs and 163 

outputs for each component.  The abstract class inherits from the OpenMI IEngine 164 

interface, making it an OpenMI compliant component.  The hierarchical relationship of 165 

the SMW with respect to other OpenMI interfaces is shown in Figure 2.  Each tier 166 

provides a level of abstraction from the OpenMI Standard Modeling interfaces.  The 167 

IEngine interface is a simplification of the ILinkableComponent interface, and the SMW 168 

abstract class is a further simplification of the IEngine interface that handles many lower-169 

level operations such as data input and output (I/O) and maintaining state during a model 170 

run.  171 

 172 

3.1. 

To abstract the modeler from manually defining component properties within the 174 

OpenMI IEngine interface, the SMW has been designed to read this information from an 175 

external configuration file with a specific XML schema (Figure 3).  The XML schema for 176 

defining the component properties closely follows the OpenMI object model for defining 177 

exchange items, the model description, and time horizons.  One SWM component must 178 

be associated with one configuration file.  The configuration file must include one or 179 

The Configuration File 173 
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more output exchange item elements and zero or more input exchange item elements.  180 

Each exchange item element must include one element set child element and one quantity 181 

child element.  Since component properties may frequently change when prototyping 182 

process-level components, there is an advantage to extracting these properties from the 183 

source code so that components do not have to be recompiled after changes to component 184 

metadata.  The configuration file is loaded into memory during the component 185 

initialization phase to populate the component's properties.      186 

  187 

3.2. 

Three methods must be implemented when building a new component using the 189 

SMW: Initialize, PerformTimeStep, and Finish.  These methods are common to most 190 

component-based modeling systems and represent the pre-run, runtime, and post-run 191 

states of model simulation.  A component developer is responsible for implementing 192 

these three methods by overriding them within the SMW abstract class.  From the 193 

perspective of the model developer, the SMW reduces the IEngine interface from 19 194 

methods to 3 methods.  The simplification of the IEngine interface requires the developer 195 

to implement three public methods and all other methods remain hidden.  As a result, this 196 

restricts the control that the developer has over the IEngine interface, which in some 197 

cases can serve as a limitation to component design.  While this simplification does limit 198 

the control the developer has when authoring a component, it also greatly increases the 199 

efficiency for creating simple, process-level modeling components by reducing the 200 

amount of code necessary to develop a new component.   201 

Method Description 188 
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The Initialize method is executed when the component is constructed and prior to 202 

the run-time portion of configuration execution. In this method, modeling units, system 203 

parameters, and initial conditions are loaded into memory from input files. During model 204 

run-time, the PerformTimeStep method is called to produce output exchange items for a 205 

specific time step. The developer defines the operations performed on each time step and 206 

is able to use input data supplied by linked components in a composition. The 207 

PerformTimeStep method returns the resulting values, making them available to other 208 

components within the component composition.  Lastly, the Finish method is called when 209 

the model has completed its simulation run.  It can be used to close files opened for 210 

reading in the Initialize or PerformTimeStep methods, or to write out simulation results 211 

produced by a component.  This method can also be used to implement post-processing 212 

routines because there is no need to communicate with other model components within 213 

the Finish method.  Once the Finish method has been called, all allocated memory for the 214 

component object is released from the computer.  215 

 216 

3.3. 

A model composition defines an interlinked set of components and the exchange 218 

of information between them (Figure 4).  A detailed view of a component implementing 219 

the SMW is represented in the shaded region of Figure 4.  In this case, three files are 220 

associated with the component: model.dll, config.xml, and elements.shp. The model.dll 221 

file contains a class that performs a process-level computation using the SMW approach 222 

and has been compiled into a dynamic-link library (DLL).  The config.xml file is the 223 

configuration file that supplies the component metadata discussed in the previous 224 

Component Composition 217 
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subsection.  Finally, a shapefile is used to spatially define the component's modeling units 225 

and parameters.  However, components are not required to use a shapefile for this 226 

purpose; other file formats could be used instead.  For example, in the case where it is not 227 

critical to describe the geometries associated with element sets (e.g. if the elements are 228 

points or non-spatial), a simple ASCII text file might be preferred to a shapefile.  In this 229 

case, the component developer can write code that reads data from the ASCII file instead 230 

of a shapefile when constructing OpenMI exchange item objects..   231 

The interaction between components within a composition is represented by 232 

directional links that join them together into a model composition.  Several links exist in 233 

Figure 4 that collectively define how data will flow through the model composition on 234 

each time step of a simulation run.  It is important to note that, although values are 235 

calculated using the model.dll file, the transfer of these values is managed completely by 236 

the SMW class.  Figure 4 illustrates this concept with the bi-directional link indicating 237 

the passing of input data to the model.dll through the SMW class, and the passing of 238 

calculation results from the model.dll back to the SMW class as output data.  This 239 

process is made possible by calling the GetValues and SetValues methods, respectively, 240 

of the SMW.  Together, the SMW and the items within the shaded region comprise one 241 

component in the composition.  The modeler will not see the details of the SMW; it will 242 

appear just as any other component within the composition.  243 

 244 

4. Case Study 245 

In order to provide a practical example implementation of the Simple Model Wrapper 246 

(SMW), this section demonstrates how the SMW can be used to implement a hydrologic 247 
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process as an OpenMI-compliant component.  For context, first consider the overall steps 248 

necessary to create a component-based model for estimating streamflow from a rainfall 249 

event.  Model development would start with a conceptualization of the system as a series 250 

of interconnected functional units or components.  In this case, the model might be 251 

decomposed into such components as precipitation, infiltration, surface runoff, and 252 

channel routing (Figure 5).  Each component in this model, with the exception of the 253 

rainfall component, requires an input exchange item to perform its computation, and each 254 

component will produce an output exchange item that can be used by other components 255 

in the composition.  Links between components define the output from one component 256 

that serves as input to another component, thus establishing the data transfers that occur 257 

while the model composition is running.  Because each component has no prior 258 

knowledge of the other components within the workflow composition prior to the 259 

component linking step, the components are considered to be loosely-coupled.  The 260 

advantage of loose coupling is that it is possible to easily “plug-and-play” different 261 

components within the workflow to create new or different workflow compositions.   262 

 For the example shown in Figure 5, the rainfall component provides precipitation 263 

values as an output exchange item by reading local data files to populate the exchange 264 

item objects.  This demonstrates how components are not limited to process routines, but 265 

can be file readers, visualization tools, or other functional tools.  This precipitation 266 

exchange item serves as input for the infiltration component, which is then able to 267 

calculate excess precipitation values for each modeling unit (i.e. subwatershed) in the 268 

watershed.  The excess precipitation values are then supplied as input to the surface 269 

runoff component, which calculates the runoff hydrograph that serves as input for the 270 
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channel routing component.  Finally, the channel routing component uses the runoff 271 

hydrographs from the subwatersheds to estimate a streamflow hydrograph at the 272 

watershed outlet.   273 

 274 

4.1. 

Although each of these components would be necessary to build an application of 276 

the aforementioned model composition, this section will demonstrate the SMW by 277 

focusing on one of those components: the infiltration component.  We choose to 278 

implement this component using the Curve Number (CN) Method because it is a simple, 279 

widely known hydrologic process representation and is therefore appropriate for this 280 

proof-of-concept example.  The CN Method uses an empirically derived relationship 281 

between land use, soil type, and antecedent soil conditions, to estimate excess rainfall 282 

from precipitation (Chow et al. 1988).  Excess rainfall is defined as the fractional rainfall 283 

that will lead to streamflow.  284 

Component Design 275 

To begin development of the CN component, a new C# .Net class was created that 285 

inherits from the Simple Model Wrapper abstract class.  This new class allows the 286 

component developer to implement the three methods, Initialize, PerformTimeStep, and 287 

Finish, discussed earlier.  The Initialize method is responsible for setting interface 288 

properties that are needed for communication with the component, as well as preparing 289 

internal data structures for the component.  Development of this method for the CN 290 

component begins by parsing the configuration file and loading its information into 291 

memory to define the component metadata (e.g. descriptions of the input and output 292 

exchange items associated with the component).  The SMW includes utility functions 293 
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such as SetVariablesFromConfigFile that can be used to automate the parsing of the 294 

XML configuration file.   295 

Next, a second data structure is created within the component to maintain internal 296 

information such as modeling unit IDs, curve number parameters, cumulative infiltration, 297 

cumulative precipitation, and excess rainfall.  The shapefile that defines the internal data 298 

structure for the component, that is subwatersheds with CN parameters, is read into 299 

memory to complete this step.  Parsing the shapefile is accomplished by utilizing 300 

methods provided by the open source SharpMap library 301 

(http://www.codeplex.com/sharpmap).  Again, it is not necessary to use a shapefile for 302 

storing the modeling unit properties and parameters.  Any file format is acceptable for 303 

this purpose as the file is read into memory during the modeler-defined Initialize method.      304 

The PerformTimeStep method is responsible for using precipitation values passed 305 

in from the linked precipitation component to calculate cumulative precipitation, 306 

cumulative infiltration, and the resulting runoff for each modeling unit within the study 307 

area.  The process begins by calling the GetValues method of the CN component (a 308 

method inherited from the SMW abstract class) to retrieve precipitation values from the 309 

SMW’s global data dictionary (Figure 6).  This incremental precipitation is then 310 

numerically integrated over time to produce a cumulative precipitation value for each 311 

modeling unit.  Excess precipitation (Pe

 314 

) for each sub-watershed is then calculated using 312 

Equation 1 that states 313 

 (1) 315 

 316 
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where P is the cumulative precipitation, Ia is the initial abstraction, and Fa is the 317 

continuing abstraction (Chow et al. 1988).  Ia and Fa

 320 

 are calculated using the empirical 318 

relationships expressed in Equations 2 and 3, respectively,  319 

      (2) 321 

                 (3) 322 

 323 

where S is the maximum potential storage of the soil.  Finally, S is calculated as a 324 

function of the CN parameter using Equation 4. 325 

 326 

 (4) 327 

 328 

As shown in Figure 6, these equations for the CN method are solved sequentially, 329 

for each subwatershed within the element set.  Once complete, runoff hyetographs are 330 

created by subtracting the previous excess precipitation from the current one.  Since 331 

OpenMI components are usually designed to operate on a time step, instead of creating a 332 

full hyetograph, only one value is produced at each subwatershed for each 333 

PerformTimeStep call using Equation 5  334 

 335 

 (5) 336 

 337 
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where H is a value from the excess rainfall hyetograph and t is the current time index.  338 

The final steps of the PerformTimeStep method are to write these resulting values to the 339 

global data dictionary within the SWM by calling the SetValues method, and to advance 340 

time within the component calling the AdvanceTime function included in the SMW utility 341 

class.  This enables the surface runoff component in the model composition to retrieve 342 

the values for its own calculations, and to advance time in the CN component to prepare 343 

it for the next time step of the model run.   344 

The last method implemented for the CN component is Finish.   When this 345 

method is called, the CN component has completed the model run and must write out the 346 

calculated excess precipitation values to file.  This outputted data can be written to any 347 

file format or data model the component developer chooses for further analysis outside of 348 

the OpenMI runtime environment.  Additional functionality can be added within this 349 

method to accomplish such tasks as data post-processing, although it is not necessary for 350 

the CN component developed here.   351 

Repeating these basic steps for each of the other three components of the model 352 

composition mentioned in the previous section would allow one to build a component 353 

composition to model rainfall-runoff.  Because this paper focuses on the design and 354 

implementation of the SMW, a full modeling example is beyond the scope and will be 355 

part of future work discussed in the final section of this paper.  The main difference 356 

between the developments strategies of various components needed to complete the 357 

model composition is the algorithms used for producing each component's output 358 

exchange items.  The precipitation component, unlike the other components, would 359 
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simply use a file to populate its output exchange item.  The process of linking the 360 

components into a composition is discussed in the following subsection. 361 

 362 

4.2. 

Authoring and executing a component composition is mediated by a configuration 364 

editor, which is a user interface application that allows the modeler to define linkages 365 

between components along with other composition parameters.   The OpenMI 366 

Configuration Editor is a free and open source editor provided through the OpenMI 367 

Association Technical Committee (OATC).   Model components are loaded into the 368 

Configuration Editor via an XML-based OMI file that references a compiled version of 369 

the component's source code in the form of a dynamic-link library.  This OMI file acts as 370 

a link between the Configuration Editor and the component itself.   371 

  Authoring and Executing a Composition  363 

Using the OpenMI Configuration Editor, links must be established that define 372 

component to component data transfers.  Link properties are edited in order to establish 373 

which output exchange item will be transferred across each link, and what input exchange 374 

item will they be paired with on the receiving end.  This is necessary since an individual 375 

component can have multiple input and output exchange items.  In the previously 376 

mentioned modeling example, a link must be established to connect the CN component to 377 

a component that can supply a precipitation exchange item.  Then a second link must be 378 

established to supply the excess precipitation calculated by the CN component to a 379 

surface runoff component. Once all components are linked in the component 380 

composition, the simulation start and end times must be determined. By default, the 381 

OpenMI Configuration Editor selects the latest overlapping time for all components 382 
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within the model composition as the simulation end time.  Simulation begin time is 383 

established as the earliest overlapping time contained in each component's time horizon.  384 

A component composition can be executed either from the Configuration Editor GUI or 385 

from a console using the command line application.     386 

   387 

5.  Summary, Discussion, and Future Work 388 

Modeling of environmental systems is challenging in part because process 389 

interaction often spans several disciplines, making it difficult to model integrated system 390 

response.  We argue that no single model can represent all aspects of an environmental 391 

system as accurately as a conglomerate of model components created and maintained by 392 

experts in each field.  Specific processes within the hydrologic cycle, for example, can be 393 

linked together using component-based modeling, without having extensive knowledge 394 

of the inner workings of each computational module.  Furthermore, componentization of 395 

environmental models also reduces repetitive code because it allows model developers to 396 

share process level components so that unique hydrologic models can be created with 397 

reusable components (Argent et al. 2006).  While we believe this abstraction and code 398 

reuse are necessary attributes of a multidisciplinary modeling system, it is nonetheless 399 

important to also consider the increased risks of modelers applying models for which 400 

they do not fully understand the inner workings.  Just as with any environmental model, it 401 

is critical for modelers to have an understanding of the theory behind the components’ 402 

mathematical representation.  Component-based modeling does not remove this basic 403 

need. 404 
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This paper outlines an approach for creating process-level OpenMI-compliant 405 

components called the Simple Model Wrapper (SMW).  The SMW abstracts the model 406 

developer from the OpenMI standard by allowing them to specify component parameters 407 

in an XML-based configuration file, and component functionality within a simple class 408 

with three methods that specify pre-run, runtime, and post-run behavior.  Furthermore, it 409 

allows modelers to more easily change component parameters, such as exchange items or 410 

time horizon, without the need to re-compile the component’s source code, as shown in 411 

Section 3.   The end result is the ability to rapidly prototype process-level components 412 

that can be used within OpenMI component compositions.    413 

The primary motivation for creating the SMW is to reduce the complexity 414 

associated with creating new, process-level components within an OpenMI-based 415 

modeling framework.  OpenMI is a powerful approach for component-based modeling, 416 

however because it was designed for wrapping large legacy models, it can be difficult for 417 

environmental modelers to use to create entirely new process-level components.  The 418 

SMW is designed to overcome this limitation.  However, because SMW was specifically 419 

designed to aid in the development of process-level components, it limits the control of a 420 

model developer compared with implementing the standard OpenMI interfaces.  421 

Therefore, it is not recommended for wrapping large legacy models, but instead is meant 422 

for the rapid prototyping of process-level model components.   423 

It is unclear at this point what computational overhead is introduced by the SMW 424 

because only components with moderate computational demand have been developed and 425 

tested.  To date, the size of model compositions using the SMW have been limited to a 426 

handful of components, although this is rarely the case when investigating real-world 427 
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problems.  That said, negligible runtime differences have been observed thus far between 428 

components created using the SWM compared to components created just with the 429 

OpenMI IEngine interface.  In order to evaluate the net overhead associated with the 430 

SMW, future research is needed to benchmark a variety of moderately to highly 431 

computationally intensive model compositions.  Additionally, the size of the model 432 

compositions being tested, quantified by the number and complexity of components, 433 

must also be varied to determine if inefficiency results from using the SMW to mediate 434 

the communication between components.  These two criteria present a large range of 435 

model compositions that must be benchmarked in order to evaluate the overall runtime 436 

efficiency of the SMW.   437 

Future work will also focus on applying the SMW to a specific watershed 438 

modeling objective in order to better understand the implementation and computational 439 

aspects of its design.  One of the aims of this work will be to understand how different 440 

component compositions, ranging in both level of detail and type of processes 441 

represented, impact predictive capability.  Another aim will be to understand how 442 

component compositions can be calibrated when each component has its own internal 443 

parameterization.  The end goal of this study will be to show how component modeling 444 

can be used to construct the most representative model, using the simplest process-level 445 

computations necessary for the question at hand.  In doing so, we will show how the 446 

SMW can be used to create a library of modeling components that can be swapped in and 447 

out of the model compositions to identify optimal component compositions for specific 448 

environmental systems.  449 

 450 
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 530 
Figure 1: The fundamental OpenMI concepts shown within a system of three 531 

components 532 

Figure 2: The abstraction of the Simple Model Wrapper from the OpenMI Standard 533 

Modeling interfaces.  534 

 Figure 3: Graphical representation of the configuration file showing the relationships 535 

between parent and child elements in the XML schema. 536 

 Figure 4: The role of the Simple Model Wrapper within a component composition 537 

containing four components 538 

 Figure 5: Model composition showing the exchange of boundary conditions between 539 

hydrological components. 540 

Figure 6: Algorithm for the computation of infiltration using the CN method, 541 

implemented within the PerformTimeStep method. 542 

543 
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