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Abstract

Complicated research and management questions regarding watershed systems

often require the use of more than one simulation model. Therefore, it is nec-

essary to develop a means to integrate multiple simulation models to predict

holistic system response. In this paper we explore the use of a component-

based approach for the runtime integration of models, implemented as “plug-

and-play” software components. The motivation for this work is to quantify per-

formance overhead costs introduced by adopting a component-based paradigm

for loosely integrating hydrologic simulation models. We construct a standard

rainfall/runoff watershed model using the Open Modeling Interface (OpenMI)

Software Development Kit (SDK) where infiltration, surface runoff, and chan-

nel routing processes are each implemented as independent model components.

We then analyze the performance of this loosely integrated model to quan-

tify computational scaling, using the Hydrologic Engineering Center’s Hydro-

logic Modeling System (HMS) for comparison. Our results suggest that the

overhead introduced by runtime communication of data is not significant when

applied for semi-distributed watershed modeling. Our analysis was limited to

semi-distributed watershed modeling, however, and future research is needed

to understand performance and accuracy for more data demanding hydrologic
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models.
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1. Introduction1

Hydrologic models typically focus on a small subset of processes within the2

overall hydrologic cycle (Singh and Woolhiser, 2002). This approach is adequate3

if one assumes that the boundary conditions of the problem do not change, and4

are not changed by, processes happening outside of the model’s scope. There5

is growing acknowledgment, however, that in many cases this is not a correct6

assumption. Groundwater and surface water provide one example. They are7

often modeled as separate entities, despite the fact that in many situations8

modeling water in one domain necessitates modeling water in the other domain9

as well. This example implies that the coupling between hydrologic subsystems10

is important. Therefore, we need to consider how to build models that are able11

to simulate these dynamic system interactions.12

One solution to this problem is to simply extend existing models so that13

they include a larger scope of process representations. This approach has been14

taken by a number of researchers that have integrated groundwater, surface15

water, climate, weather, economic, and other models by altering source code so16

that they are able to exchange boundary conditions during a model simulation17

(e.g. Ahrends et al., 2008; Anderson et al., 2002; Kunstmann et al., 2008; Yu18

et al., 2006; Barthel et al., 2008; Mölders and Rühaak, 2002; Maxwell et al.,19

2007). The general approach taken in these examples can be classified as tight20

integration (Sui and Maggio, 1999), where components of a system are compiled21

into a single application. The primary advantage of this approach is that the22

modeler has full control over all system components, therefore computational23

performance can be optimized across the entire system.24

While there are clear advantages to using a tight integration approach for25

coupling models, there are also limitations. First, in the case that a model26
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is extended by including new code, adopting a tight integration approach in-1

creases code redundancy through a process called “model creep.” Model creep2

is where a model originally intended for simulating one set of processes has been3

extended to include other processes that were previously considered predeter-4

mined boundary conditions. This is problematic because the development team5

are likely experts in the field that the model was originally designed to simulate,6

not in these related topics. The second case is that two existing models are cou-7

pled using a tight integration approach. This requires changes to the model’s8

source code, which make it out of sync with core code development efforts. As9

a result, it is difficult to maintain a state-of-the-art modeling system with such10

an approach.11

An alternative method for coupling models is to follow a loose integration12

paradigm that focuses on the decomposition of a system into a set of interlinked13

computational components (Argent et al., 2006). The simplest form of loose14

integration is communication through a common file format or by data conver-15

sions between model-specific file formats. This simple form of loose integration16

can be computationally inefficient if models require runtime communication of17

data. To address this limitation, loose integration can also be achieved by cre-18

ating models as software libraries instead of stand-alone executables which can19

then be integrated into a modeling framework (Löwy, 2005). Furthermore, if20

the model libraries follow a standard interface specification, then it is possible21

to create a generic modeling framework that facilitates model-to-model data22

communication during simulation.23

Although tightly integrated approaches for modeling hydrologic systems are24

likely more common, loose integration is becoming more widely used. Sev-25

eral frameworks have been recently developed that offer the option of join-26

ing models together in a loosely integrated, plug-and-play manner (e.g., the27

Community Surface Dynamics Modeling System (CSDMS), the Earth System28

Modeling Framework (ESMF), the Open Modeling Interface (OpenMI), etc.).29

These loosely integrated architectures give modelers the freedom to interchange30

process representations, and allows them to construct the most representative31
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model possible for a specific system and a specific objective (Morton et al.,1

2003). Furthermore, these systems enable modelers to combine the contribu-2

tions of legacy models with new process-level models, providing a full suite of3

tools to use during model development.4

Despite the growing popularity of loosely integrated frameworks for modeling5

environmental systems, there are few studies that quantify the computational6

overhead introduced by the approach. Loose integration has the potential to7

introduce performance overheads that may significantly impact model runtime.8

For example, consider the Open Modeling Interface (OpenMI) version 1.4 and its9

mechanism for data transfer between components. In an OpenMI simulation,10

data is transferred between components during runtime using a request and11

reply paradigm (Gregersen et al., 2007). Since this can result in thousands or12

millions of transactions during a model simulation, we hypothesize that it may13

have a considerable effect on execution time. For this reason, it is expected that14

model communication will be a source of simulation inefficiency, which will be15

amplified as the number of time steps or the size of data transfers increase. We16

do not know if the overhead of this communication protocol makes the approach17

unattractive for modeling hydrologic systems. This analysis is meant to provide18

further insight into this issue.19

Given this motivation, we investigated the performance of the OpenMI (ver-20

sion 1.4) for simulating rainfall/runoff using typical hydrologic engineering cal-21

culations. We used the Hydrologic Engineering Center’s Hydrologic Modeling22

System (HMS), an industry standard model widely used in engineering practice,23

to verify our calculations and to provide a point of comparison for the compu-24

tational scaling results. We created a rainfall/runoff model using the OpenMI25

and HMS for the same watershed, to simulate the same storm event, using the26

same hydrologic process representations. Two metrics were used to evaluate27

computational performance: an endurance test in which the number of time28

steps was increased and a load test where the number of modeling elements29

was increased. The goal of these experiments was to quantify how the OpenMI30

scales as the number and the size (i.e., memory) of communications between31
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model components increase.1

In the following section we provide further background on the distinction2

between tight and loose model integration techniques. Additionally, a brief3

introduction to the HMS and OpenMI systems is provided to familiarize the4

reader with key concepts. We then describe the methodology of this study,5

including the implementation of each model and the tests that were conducted6

to measure computational scaling. Finally, we present and discuss the results,7

and conclude with our findings and suggestions for future research.8

2. Background9

There are distinct differences between the loose integration and tight in-10

tegration approaches. In the tight integration approach (Figure 1), the Model11

Coupler class directly calls routines defined internally by Models 1 and 2. These12

routines must be compiled into the modeling system prior to a model simula-13

tion and cannot be discovered at runtime. In contrast, the loose integration14

approach (Figure 2) features a Model Engine class that calls Routines 1 and 215

by instantiating an object which implements a standard interface. This stan-16

dard interface, denoted as ICoupler, defines simulation methods that must be17

implemented in each Routine. Using this approach the Model Engine class re-18

ceives data through the standard interface, having no knowledge of how it is19

created (Holzworth et al., 2010). This is significant because additional Routines20

can be added to the system and the Model Engine automatically knows how21

to communicate with them. Hence the system can be easily reconfigured and22

extended using a “plug-and-play” approach.23

This “plug-and-play” characteristic of loosely integrated systems encourages24

modelers to add, remove, or replace components within a model configuration25

(Govindaraju et al., 2006). Additionally, computational redundancy is avoided26

by designing components to address specific parts of the overall system. This27

characteristic is useful in forming unique representations of complex systems,28

including multi-disciplinary applications, because components can be built by29
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independent groups (Kennen et al., 2008). Loosely integrated, process-level1

modeling offers greater flexibility in model design as well as transparency in2

model execution. Using this concept, a hydrologic system can be decomposed3

into independent process-level components (infiltration, surface runoff, channel4

routine, etc.) that communicate with each other through standard interfaces5

(Argent et al., 2006).6

In our analysis we have elected to use the Hydrologic Modeling System7

(HMS), developed by the US Army Corps of Engineers (USACE), as a point of8

comparison. HMS is a deterministic watershed model that focuses primarily on9

water quantity simulation (Scharffenberg and Fleming, 2009). It was selected10

for this study because it is widely used in hydrologic engineering analysis for11

simulating rainfall/runoff (e.g. Al-Abed et al., 2005; Knebl et al., 2005). Built12

from its predecessor HEC-1, HMS simulates hydrologic systems as an inter-13

connected network of hydrologic and hydraulic units (i.e. subbasins, reaches,14

reservoirs, junctions, etc.) (Chu and Steinman, 2009). Each of which has a15

unique combination of process representations and parameter definitions, that16

allow the user to customize the model for a specific watershed study.17

An HMS model is divided into three categories: watershed physical descrip-18

tion, meteorological modeling, and hydrologic simulation (Scharffenberg and19

Fleming, 2009). The physical description of a watershed includes a suite of20

computational algorithms to simulate infiltration losses, transformation of ex-21

cess precipitation, representation of baseflow, and computation of flow in open22

channels (Feldman, 2000). The meteorological model contains algorithms for23

estimating historic and synthetic precipitation, evapotranspiration, and snow24

melt. Lastly, hydrologic simulation is managed by user-defined control speci-25

fications, which include the start time, end time, and computational interval26

(Scharffenberg and Fleming, 2009).27

We elected to use the OpenMI version 1.4 as the loosely integrated framework28

because it is tailored to the water resources domain. It also allows for the repre-29

sentation of discrete geometric features such as the subbasins used in HMS. The30

OpenMI was developed in 2005 and was funded through the European Union31
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Water Framework Directive. Its design focuses on establishing an interface stan-1

dard to enable model interoperability (Moore et al., 2005). As a result, it is not2

meant to be a complete modeling framework, but rather a standard message3

passing protocol that is implemented through standard interfaces (Gregersen4

et al., 2007). The OpenMI Association Technical Committee (OATC) has also5

developed a Software Development Toolkit (SDK) that extends the OpenMI6

standard into a modeling framework. We use this SDK along with extensions7

designed to more easily create process-level OpenMI components (Castronova8

and Goodall, 2010) to implement the loosely integrated watershed simulation.9

The OpenMI consists of interface standards that are implemented by soft-10

ware classes to form the foundation of an integrated model. Four key concepts of11

this standard are linkable components, exchange items, links, and model compo-12

sitions (Brinkman et al., 2005). Linkable components are objects that perform13

calculations and are able to accept input exchange items and produce output14

exchange items. Exchange items define the messages that pass between linkable15

components during a simulation, and consist of objects that describe the quan-16

tity and element set for a data exchange (Gregersen et al., 2007). Lastly, links17

connect components together by specifying the pathway through which data18

flows from one component the next. Once links between model components19

have been established, the system is referred to as a model composition and is20

executed with either the command line or GUI software application provided as21

part of the OpenMI SDK.22

3. Methodology23

To quantify the computational performance of the OpenMI, we modeled the24

same watershed system using the same mathematical relationships, but using a25

loosely integrated approach in one model (the OpenMI version) and using an26

industry standard model that follows a tight integration approach in the other27

(the HMS version). Our goal was to first verify that both models produced the28

same results, and second to quantify how each model scaled as the modeling29
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demands increased. To do this, we conducted two tests. In the first, called1

the load test, each model executes multiple simulations in which the number of2

computational elements is gradually increased to an upper limit. The second,3

named the endurance test, evaluates how each model responds to an increasing4

simulation duration. During these tests, simulation runtimes were recorded as5

model and watershed properties changed. The objective of this experiment was6

to understand the computational scaling of a loosely integrated architecture7

(i.e. the OpenMI) for semi-distributed rainfall/runoff applications. The HMS8

model implemented to provide a basis for comparison because it is a widely9

used, industry-standard hydrologic model. In this section we first introduce the10

study area, the Smith Branch Watershed near Columbia, South Carolina, and11

then describe the model from a mathematical and implementation perspective.12

Finally we describe the computational scaling tests.13

3.1. Study Area14

The study area for this work was the Smith Branch watershed located in15

Columbia, SC (Figure 3). The watershed has an area of 5.6 mi2 and consists16

mostly of developed land (11% high intensity, 26% medium intensity, 37% low17

intensity, and 16% open space). The primary soil type in the watershed is sandy18

loam (70%), while 25% of the watershed is loam and 5% is sand. The watershed19

is gaged by a US Geological Survey monitoring station 02162093 “Smith Branch20

at North Main Street at Columbia, SC”. This gauging station reports both water21

surface height and discharge every 15 minutes. We did not calibrate the models22

using this observed flow because the goal was to understand computational23

performance rather than simulate a particular event.24

3.2. Model Description25

A conceptual view of a rainfall/runoff system is presented in Figure 4. The26

models implemented in both HMS and OpenMI contain mathematical approx-27

imations for precipitation, infiltration, surface runoff, and streamflow. Precipi-28

tation was supplied as model input and obtained from a Next Generation Radar29
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(NEXRAD) precipitation product provided through the National Climatic Data1

Center (NCDC). Excess precipitation (Pe) is modeled using the Natural Re-2

sources Conservation Service (NRCS, formally SCS) Method for Abstraction3

(Soil Conservation Service, 1972; Chow et al., 1988). According to this method4

Pe = P − Ia − Fa (1)

where P is precipitation, Ia is initial abstraction, and Fa is continuing abstrac-5

tion. Fa is estimated by a conceptual model6

Fa =
S(P − Ia)

P − Ia + S
(2)

where S is soil water storage. Furthermore, S is estimated based on an empirical7

equation8

S =
1000

CN
− 10 (3)

where CN is the curve number parameter which is a function of land cover and9

soil conditions (Soil Conservation Service, 1975). Lastly, Ia is estimated using10

an empirically derived relationship that states Ia = 0.2S.11

These equations are solved to estimate the amount of excess precipitation12

(Pe) that will occur given a rainfall event. This method for estimating rainfall13

abstraction is commonly used in hydrologic engineering practice, which was the14

motivation for using it in our study. In addition, because the overall goal of the15

study is to test loose integration of hydrologic models model, predictive accuracy16

of the model itself was not our primary focus. Curve numbers where derived17

using geospatial analysis; spatial data layers of land cover and soil data were18

gathered from the Environmental Protection Agency (EPA) and NRCS, respec-19

tively, and curve number values were taken from the NRCS Technical Reference20

Manual 55: Urban Hydrology for Small Watersheds (Soil Conservation Service,21

1975). Weight averaged curve numbers were calculated for each subbasin within22

the watershed using this data and approach.23

The watershed response to a rainfall event was estimated using the NRCS24

Dimensionless Unit Hydrograph (Chow et al., 1988). This is a deterministic and25
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lumped approach for estimating a streamflow hydrograph at the outlet of a sub-1

basin given an excess precipitation hyetograph. To apply the unit hydrograph2

procedure, several parameters must first be derived: the time at which peak flow3

occurs (Tp), the peak flow rate (qp), and the subbasin lag time (tp). Alterna-4

tively, lag time can be represented as 0.6tc, where tc is the time of concentration5

for the subbasin. Peak flow rate was estimated using6

qp =
483.4A

Tp
(4)

where A is the watershed area in mi2, Tp is in hours, and qp has units of ft3 s−1
7

in. Tp is defined as8

Tp =
tr
2

+ tp (5)

where tr is the rainfall duration in hours. An instantaneous streamflow hy-9

drograph was derived for each subbasin using the unit ordinates of the NRCS10

dimensionless hydrograph and the calculated peak flow rate (qp). Once formed,11

this instantaneous unit hydrograph was used to calculate a direct runoff hydro-12

graph using Equation (6) where Pe,m is the excess precipitation at time m and13

Un−m+1 is the unit hydrograph ordinate of the current index, n, minus m + 114

(Chow et al., 1988).15

Qn =

n<=M∑
m=1

Pe,mUn−m+1 (6)

Flow is routed through the channel network using the Muskingum method.16

This method transforms the streamflow calculated at each subbasin outlet through17

a channel network to the watershed outlet. The Muskingum algorithm is derived18

from a variable discharge-storage relationship and considers the total water stor-19

age in a channel as a combination of wedge and prism volumes (Chow et al.,20

1988). The wedge shape accounts for the back water or flood wave effects, and21

is controlled by a weighting factor, X, where 0 ≤ X ≤ 0.5. The prism stor-22

age represents the volume of water within a cross-section of the channel, and23

is weighted by the proportionality coefficient, K, that is approximated as the24

10



time it takes for a flood wave to travel through the reach (Mays, 2005). The1

total storage, S, is expressed as a combination of wedge and prism volumes2

Sj+1 − Sj =
Ij + Ij+1

2
∆t− Qj + Qj+1

2
∆t (7)

where I is inflow and Q is outflow at times j and j + 1, in units of ft3 s−1 .3

Given that storage can be expressed as a function of the K and X parameters,4

Equation (7) can be simplified to5

Q(j+1) = C1I(j+1) + C2Ij + C3Qj (8)

where the C1, C2, and C3 coefficients are functions of K, X, and ∆t (Chow6

et al., 1988).7

3.3. Model Implementation8

3.3.1. HMS Model9

The process of creating the HMS model for Smith Branch is illustrated in10

Figure 5. It began with constructing hydrologic elements using the HMS Basin11

Model Manager. These elements represent specific parts of the overall hydro-12

logic system. Linkages are used to connect elements in series and to define the13

order in which the system of equations is solved. To recreate the Smith Branch14

watershed, a set of subbasin, reach, and junction elements were connected in se-15

ries. Once the watershed was assembled, process representations were chosen for16

each hydrologic element. As discussed in Section 3, infiltration was calculated17

using the NRCS Curve Number method, surface runoff was calculated using the18

NRCS Unit Hydrograph procedure, and channel routing was performed using19

the Muskingum method. Lastly, all input parameters were specified for each20

mathematical procedure. These input parameters were derived from geospa-21

tial data sets and were processed using Geographic Information System (GIS)22

software.23

The HMS Time-Series Data manager was used to apply the measured rain-24

fall values to the watershed in a spatially distributed manner. This was achieved25
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by first creating a synthetic precipitation gage for each subbasin within the wa-1

tershed. Next, incremental rainfall hyetographs were manually entered from2

the recorded NEXRAD precipitation data. The HMS Meteorologic Model man-3

ager was used to pair these rainfall hyetographs with their respective subbasins.4

Once complete, each subbasin within the watershed was associated with a unique5

rainfall hyetograph derived from radar data.6

After all preparatory data procedures were complete, the HMS Control Spec-7

ifications manager was configured to control model simulation. This tool enables8

users to specify simulation start and end date-times and also the simulation time9

interval. Lastly, a simulation run was created and executed. Simulation results10

were stored for each hydrologic element within the system, in the Hydrologic11

Engineering Center Data Storage System (HEC-DSS).12

3.3.2. OpenMI Model13

To construct the OpenMI model, components were first developed to per-14

form infiltration, surface runoff, and channel flow calculations. Each process was15

defined by a specific mathematical relationship, described in the previous sec-16

tion: NRCS Curve Number method, NRCS Unit Hydrograph transformation,17

and Muskingum channel routing, respectively (Figure 6). A key aspect of the18

OpenMI is that components communicate with each other during model simu-19

lation on a time step basis. This communication is designated by the “request”20

and “reply” loop shown in the right column of Figure 6. This workflow is differ-21

ent than most traditional models that tend to execute each process for the entire22

simulation duration, sequentially. In contrast, once a simulation is initiated in23

the OpenMI model, the “downstream” component in the chain requests data24

from its “upstream” neighbor. In this case Channel Flow requests data from25

Surface Runoff. The Surface Runoff component is unable to supply values to26

Channel Flow because it to requires input from another component. Likewise,27

the Surface Runoff component will request data from Infiltration which subse-28

quently requests data from Precipitation. Since Precipitation does not require29

input from any other component, it is able to respond to Infiltration with the30
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requested data. The Infiltration component receives this data, processes it, and1

then sends the result to Surface Runoff. This is repeated until Channel Flow2

processes its result, at which time the entire sequence of events begins again for3

the next time step.4

Components were developed using an abstract class based on the OpenMI5

Association Technical Committee’s (OATC) IEngine interface called the Simple6

Model Wrapper (SMW) (Castronova and Goodall, 2010). The OATC IEngine7

was created to aid in the process of “wrapping” legacy models into OpenMI-8

compliant components. In previous work we showed that the IEngine interface9

can be simplified for creating new, process-level model components using the10

concept of an abstract class. Therefore, the SMW was developed to enable11

model developers to quickly create new process-level components by simplifying12

the IEngine interface to an abstract class where the model developer overrides13

three methods: Initialize, PerformTimeStep, and Finish. Furthermore, model14

attributes are specified in an XML configuration file. The Initialize method is15

used to setup a model component prior to model simulation. It can be used16

to read input data, parameterize the model, establish initial conditions, or per-17

form similar setup operations. The PerformTimeStep method is used to exe-18

cute calculations that occur during simulation runtime. This method starts by19

requesting input values from “upstream” components, then performing a com-20

putation using these values, and finally supplying the results to “downstream”21

components. The Finish method is called after a simulation ends and can be22

used to write model output files and release allocated memory.23

Rainfall data was supplied to the model configuration using a component de-24

signed to read time-series data stored in Water Markup Language (WaterML)25

format; an XML-based standard for storing hydrologic time-series values (Valen-26

tine and Zaslavsky, 2009). Prior to simulation, this component creates exchange27

items by reading a directory of WaterML files. It uses the information within28

them to establish input and output exchange items, element sets, and time29

horizons. Values are stored in a buffer (i.e. Oatc.SmartBuffer) so they can be30

retrieved for specific times, upon request. In the case that a component requests31
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values for a time that does not match those included in the input files, this com-1

ponent performs a linear time interpolation from the known values, to respond2

to the request.3

The amount of excess precipitation was determined using the NRCS Curve4

Number method. During the initialization phase, curve number values for each5

subbasin are read from an input shapefile and stored in memory so they can be6

accessed during simulation. Next, input and output exchange items are defined7

by reading information contained within the input shapefile. Lastly, potential8

infiltration and initial abstraction are calculated for each subbasin using Equa-9

tions (1) through (3). During model simulation, the PerformTimeStep method10

requests values from the rainfall component. It then calculates how much ex-11

cess precipitation will occur, based on these values and subbasin properties.12

The component can then supply excess precipitation for each subbasin in the13

watershed to the NRCS Unit Hydrograph component. Once model simulation14

is complete, the Finish method is called to write results to an output file.15

Excess precipitation was transformed into subbasin outflow using the NRCS16

Unit Hydrograph method. During the Initialize phase, a unique unit hydrograph17

is created for each subbasin in the watershed based on their unique physical18

properties. This is done by first extracting parameters from the input shapefile,19

then calculating the time in which peak flow occurs using Equation (5), and20

finally calculating the peak flow rate for this time using Equation (4). Once21

these values have been calculated, a unit hydrograph is established using the22

dimensionless unit ordinates provided by the National Engineering Handbook23

(Soil Conservation Service, 1972). These unit hydrographs are utilized in Per-24

formTimeStep method to calculate the outflow at the current time. This is25

done using Equation (6), where Pe,m is the excess rainfall that is provided by26

the NRCS Curve Number component. In the Finish method, subbasin outflows27

are written to disk and internal component objects are released from memory.28

Lastly, the subbasin outflows were routed through the stream network us-29

ing the Muskingum Routing method. During the component’s Initialize phase,30

channel parameters such as storage and proportionality coefficients, X and K,31
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are read from an input shapefile. A network is also created from the input1

shapefile by associating each reach with upstream and downstream neighbors.2

During the PerformTimeStep phase, this component retrieves outflow from each3

subbasin and routes them through the stream network using Equation (8). The4

Finish method is used to save the routed streamflow to a specified output file.5

3.4. Performance Tests6

Performance tests were conducted to evaluate the potential computational7

costs introduced by the OpenMI communication paradigm when simulating a8

semi-distributed rainfall/runoff system. In the first test, the number of modeling9

units per simulation was varied. By increasing the number of modeling units,10

we were able to evaluate how each model operates under different data loading11

conditions. For the OpenMI model, this increase in modeling units is not only12

more computationally demanding, it also results in larger sized (in terms of13

memory) data transfers between model components. We termed this test the14

“load test” because it increases the size of data that components must pass15

between one another during a simulation run (Meier et al., 2007). The second16

test was designed to evaluate how each model responds to longer simulation17

durations. To do this, we varied the number of time steps performed in a18

simulation from 100 to 10,000, while maintaining a constant time step interval.19

Since a constant time step was maintained, synthetic rainfall data was required20

as input for both models to extend simulation duration. We termed this test the21

“endurance test” because it evaluates the ability for models to handle a large22

number of data transfers in a single simulation (Meier et al., 2007).23

Tools were used, such as Arc Hydro (Maidment, 2002) and ArcGIS R©, to24

subdivide the watershed into 1, 50, 100, 150, and 200 subbasins. It was not25

practical to subdivide the Smith Branch watershed into more that 200 sub-26

basins, but we did extend the load test to a larger number of model elements27

into the thousands by considering a synthetic watershed. Several scripts were28

written to automate the necessary geoprocessing steps required to create model29

inputs. This included the creation of input shapefiles with model parameters30
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such as CN and Tc for both the HMS and OpenMI. The OpenMI components1

utilized these shapefiles as model input. In contrast, HMS model simulations2

necessitated supplementary scripts to extract the element set data from the var-3

ious shapefiles, and programmatically write model inputs. The end result were4

identical model compositions within each software environment. The model5

runtimes used in our analysis were taken from reported values within HMS and6

OpenMI simulation output files.7

4. Results and Discussion8

The first objective of our study was to ensure that both models, the one built9

with HMS and the other built with OpenMI, produced the same output pre-10

dictions for the watershed system. Figure 7 shows that both models calculated11

identical values for cumulative excess precipitation, surface runoff, and stream-12

flow. This confirms that no errors were introduced as a result of decoupling13

the physical system into individual OpenMI-compliant computational compo-14

nents. The second objective was to quantify the overhead introduced during15

model simulation by the OpenMI communication standard. This objective is16

subdivided into two distinct tests (1) the load test and (2) the endurance test.17

Results from the load test where the Smith Branch watershed was delineated18

into a varying number of subbasins revealed that, as the number of computa-19

tional elements increased, the OpenMI’s performance remained comparable to20

that of the HMS (Figure 8). In fact, the OpenMI model completed its simula-21

tion runs faster than the HMS for almost every scenario. The shaded regions22

around each line define the range of runtimes for each test case. This vari-23

ability in runtime was caused primarily from the limited precision available for24

measuring runtimes, in particular for the HMS case, but also variability in com-25

puting resources available during each model run. The results suggest that the26

HMS runtime is following a linear trend for 100, 150 and 200 subbasins where27

the model completed in one second for both the 1 and 50 subbasin cases. The28

OpenMI shows some evidence of nonlinearity as the number of subbasins in-29

16



creases, and we present a separate test later in this section for extending the1

study beyond 200 model elements to further explore this finding. Analysis of2

just the test results and not extrapolating beyond 200 subbasins, however, sug-3

gests that the overhead introduced by component-to-component data transfers4

in the OpenMI are minimal. The small range of variability for the OpenMI5

simulations is a result of our ability to precisely measure execution times for6

the different simulations. In contrast, the HMS’s variability is much larger, due7

primarily to the lack of precision in which execution times could be recorded.8

This lack of precision also offers an explanation for the seemingly inconsistent9

behavior of the HMS. Since the actual recorded execution times for the HMS10

model vary irregularly, we looked at how the shaded region trends as loading11

increases.12

Figure 9 illustrates memory consumption for each system during the loading13

test. Values were determined by manually examining CPU resources while si-14

multaneously opening, loading, and executing simulations. The “Startup” and15

“Model Load” phases of simulation represent the opening of the application it-16

self and loading of the various models, respectively. Their values remain fairly17

constant for both systems, even as the number of hydrologic units increases. In18

contrast, the “Simulation” portion of model execution changed in each scenario.19

Both models follow a linear and fairly constant trend with a small slope during20

this phase. This suggests that as the number of data points increases beyond21

200 elements, we can expect both models to behave in a similar way.22

Because the loading test suggested that a nonlinear trend may occur in the23

OpenMI system as the number of modeling units per simulation continues to24

increase, we extended the load test to include a larger number of model ele-25

ments. Synthetic element sets were created so that the number of modeling26

units could extend beyond the range typically used for semi-distributed mod-27

eling. This large-scale loading test was only done for the OpenMI model, as it28

was not possible to for us to extend the HMS into the range of thousands of sub-29

basin units. Figure 10 illustrates how the OpenMI model execution time varies30

as the number of modeling elements increases beyond the range of the previ-31

17



ous test. The first plot (left) shows the total model simulation time compared1

to the component-to-component communication time, which was estimated by2

subtracting the sum of the time spent within each component’s Initialize, Per-3

formTimeStep, and Finish methods from the total simulation time. It is clear4

from this analysis that the component-to-component communication represents5

only a small fraction of the total model execution time. Also, we did not see6

any evidence of nonlinearity in the OpenMI communication itself so that any7

nonlinearity present in Figure 8 is attributed to the scaling of the individual8

model components and not the OpenMI communication paradigm.9

The second plot in Figure 10 (right) provides further insight into computa-10

tional performance by presenting the simulation runtime for each component,11

which equals the sum of the time spent within that component’s Initialize,12

PerformTimeStep, and Finish methods. This analysis shows that the major-13

ity of the model simulation time is due to the Muskingum component and,14

more specifically, to this component’s PerformTimeStep method. This finding15

illustrates how the computational expense of a single component can have a16

profound impact on the overall execution speed of the model. One advantage of17

componentizing the model is that it is relatively easy to isolate computational18

bottlenecks within the system by tracking the runtime of each component within19

the system, and because each component is loosely coupled within the system,20

efforts can be made to address computational inefficiencies of a single component21

in isolation of the larger system.22

In the endurance test, the Smith Branch watershed was delineated into 1523

subbasins and simulations were executed over varying time durations, all hav-24

ing the same time step. The results show that the OpenMI model scales well25

in comparison to the HMS as simulation duration increases (Figure 11). It was26

predicted that the runtime of the OpenMI model would drastically increase as27

the number of time steps per simulation increased. This assumption was made28

on the basis that, if a performance lag exists during component communication,29

then this lag will become more pronounced as the number of communications30

increases. In fact, the OpenMI model completed in approximately half the time31

18



as HMS for a simulation that required 10,000 time steps. As previously stated,1

the shaded region of the figure represents variability in the simulation runtimes2

that resulted primarily from the limited precision in which runtimes could be3

measured and, to a lesser extent, variability in computing resources available4

when an individual model run was completed. The upper and lower bounds5

of these regions are defined by the minimum and maximum recoded execution6

times of the respective modeling systems. The HMS scaling follows an irregular7

trend that appears to be nonlinear with the exception of the result for 5,0008

time steps. In contrast, the OpenMI scaling appears to be linear over the entire9

test range. This result was expected because the same calculation is evaluated10

on each time step of the model run, therefore 100 more time steps would require11

100 more calculations per component. The variability in the OpenMI model’s12

execution times are very small because it was possible to record simulation run-13

times with high accuracy, whereas the HMS variability is much larger because14

our method for measuring simulation runtimes of the HMS model lacked pre-15

cision. Considering the lower limit of these regions, both models appear to16

follow a linear trend, although the HMS runtime increases more rapidly than17

that of the OpenMI. From this result we can infer that as the simulation length18

increases, the OpenMI model will continue to scale better that the HMS.19

Figure 12 illustrates the allocated memory for each model as three distinct20

phases of simulation: “Startup,” “Model Load,” and “Simulation.” Both models21

respond similarly under the “Startup” and “Model Load” phases of the test.22

These trends are expected to continue linearly as the number of time steps23

exceeds 10,000. The primary concern was how the OpenMI architecture stores24

data over long periods of time. As expected, each model consumes more memory25

during the “Simulation” phase. Both the HMS and OpenMI models, however,26

require additional resources at a similar rate. The outcome of this test suggests27

that performance lags do not result from data storage over a long simulation28

duration.29

When interpreting the results from the semi-distributed load and endurance30

tests we must consider that HMS is a fully implemented model, meaning it31

19



includes additional data logging and post processing routines. The OpenMI1

implementation was created for this study and is a very light-weight imple-2

mentation that does not include robust error handling, data logging, or user3

customization. These differences may influence the scalability of each model.4

For this reason, the results should not be interpreted to mean that OpenMI5

is faster than HMS, because the two models do not include the exact same6

functionality. When designing these experiments, the goal was to quantify how7

the two models scaled in a general sense as we increased data communication8

loads and frequencies. The most important discovery, therefore, is that the9

OpenMI model scaled in a similar way to the HMS. Furthermore, the OpenMI10

architecture does not introduce any significant computational overhead.11

We did not anticipate that both versions of the model would scale simi-12

larly, instead we expected that the additional communication introduced by13

the loosely integrated approach would result in performance loss. This per-14

formance loss, we thought, would stem from inefficiencies in how data is com-15

municated between OpenMI model components during runtime. The load and16

endurance tests that were performed indicate that the mechanism by which17

the OpenMI shares data amongst components introduces insignificant lag for18

semi-distributed applications. However, because it is possible that the data19

communicated between components was sufficiently small that lags appeared to20

be non-existent, we performed another test to evaluate the OpenMI under larger21

loading conditions. This second test showed that the OpenMI communication22

had a small impact on the overall model runtime and scaled with a linear trend.23

5. Summary, Conclusions, and Future Work24

The primary motivation for this study was to improve understanding of25

the computational efficiency of a loose integration paradigm, specifically the26

OpenMI version 1.4, for modeling hydrologic systems. Our goal was to first27

show that it is possible to construct a process-level loosely integrated hydro-28

logic model, and second to quantify the computational cost associated with29

20



message passing. To do this, a semi-distributed rainfall/runoff watershed model1

was developed as a set of OpenMI components and evaluated in two perfor-2

mance tests. For comparison purposes, we constructed a similar representation3

using an industry-standard watershed model: HMS. In the first test, the size4

of messages passed between components was gradually increased. This test5

addressed the OpenMI’s ability to manage the transfer of various sized data6

packets between components. The OpenMI model itself was then tested under7

larger loading conditions, outside the practical range for semi-distributed water-8

shed modeling applications, to further investigate its scalability. In the second9

test, the number of messages passed between model components was increased10

to test its impact on simulation runtime. This was accomplished by extending11

the simulation duration while maintaining a constant time step. This test ad-12

dressed the efficiency of the OpenMI’s request and reply mechanism. Together,13

these experiments allowed us to quantify how the OpenMI model scaled as the14

size and number of messages passed between model components increased.15

We found that the OpenMI-based model was able to produce identical val-16

ues to the HMS model, a result that we expected and that was necessary to17

show prior to performance testing. The load test evaluated how efficiently data18

is shared among components and quantified the effect that the transfer of in-19

creasingly sized data packets has on model performance. We found that the20

OpenMI model runtimes scaled well in comparison to the HMS. However, the21

shaded regions in Figure 8 suggested that the OpenMI may follow an nonlinear22

trend as the number of modeling units is extended beyond what was used in23

this study. We were able to further explore this finding by extending the load-24

ing conditions beyond the range of semi-distributed applications using synthetic25

modeling units. We found from this experiment that the nonlinear trend of the26

OpenMI model was caused by the computational expense of the Muskingum27

component and not the OpenMI communication mechanism. By decomposing28

the system into components with standard interfaces, it is trivial to track the29

computational time spent in each component’s key methods during the simu-30

lation run. This can provide valuable information for addressing model bottle-31

21



necks and improving overall model performance. The endurance test evaluated1

how the OpenMI performed for increasing time durations. The results of this2

test (Figure 11) again show that the OpenMI scales favorably in comparison to3

the HMS. In fact, it appears from our tests to follow a linear trend, suggesting4

that as simulation duration continues to increase, runtime will still be within5

an acceptable range. Overall, the performance experiments of adjusting the size6

and quantity of messages passed within an OpenMI configuration showed no7

significant performance issues within ranges typical for semi-distributed water-8

shed modeling. Future work should extend these tests to ranges more common9

for more computationally demanding hydrologic modeling paradigms.10
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Model Coupler

Model 1

Open():void

Sim1():double

Sim2():double

Close():void

Model 2

Open():void

Read():void

Exec():double

Close():void

Figure 1: In a tightly integrated system, the Model Coupler class directly points to the

methods defined within each Model.



Routine 1

 Open():void

 Run():void

 Close():void

Routine 2

 Open():void

 Run():void

 Close():void

Model Engine
<<Interface>>

ICoupler

 Open():void

 Run():void

 Close():void

Figure 2: In a loosely integrated system, the ICoupler interface defines the methods

required by the Model Engine, but they are implemented by external Routines.
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Figure 3: Schematic view of the Smith Branch watershed, including the derived sub-

basins and reach network.



Precipitation
• Next generation RADar (NEXRAD)
• Provides spatially distributed rainfall 
measurements

Infiltration
•Curve Number Abstraction
• Calculates the amount of excess 
precipitation that will become surface runoff

Surface Runoff
• Dimensionless Unit Hydrograph
• Calculates direct runoff hydrographs for 
each subbasin

Streamflow Routing
• Muskingum Method

• Routes streamflow through the channel 

network using a variable discharge-storage 
relationship

Figure 4: A conceptual representation of a simple rainfall/runoff system
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Figure 5: Flow chart showing the model development procedure within the Hydrologic

Modeling System.
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Figure 6: The work flow of the loosely integrated model, showing the interaction of

each component with a single physical process representation.
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Figure 7: The results produced by each modeling system. The OpenMI values are

given in the first row and HMS values are in the second. Cumulative Pe and surface

runoff are shown for the contributing subbasins, and streamflow is at the outlet of the

watershed.
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Figure 8: The load test shows how model run time is effected as the number of compu-

tational elements increases. The shaded regions indicate variability in simulation run

time, bounded by the minimum to maximum recorded values.
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Figure 9: The memory allocated during each phase of model simulation, under various

loading conditions.
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Figure 11: The endurance test shows how model run time is effected by an increasing

number of simulation time steps. The shaded regions indicate variability in simulation

run time, bounded by the minimum and maximum recorded values.
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Figure 12: The memory allocated during each phase of model execution, for various

simulation durations.




