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Abstract 23 

Calibrating watershed-scale hydrologic models remains a critical but challenging step in the 24 

modeling process. The Soil and Water Assessment Tool (SWAT) is one example of a widely 25 

used watershed-scale hydrologic model that requires calibration. The calibration algorithms 26 

currently available to SWAT modelers through freely available and open source software, 27 

however, are limited and do not include many multi-objective genetic algorithms (MOGAs). The 28 

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) has been shown to be an effective and 29 

efficient MOGA calibration algorithm for a wide variety of applications including for SWAT 30 

model calibration. Therefore, the objective of this study was to create an open source software 31 

library for multi-objective calibration of SWAT models using NSGA-II. The design and 32 

implementation of the library are presented, followed by a demonstration of the library through a 33 

test case for the Upper Neuse Watershed in North Carolina, USA using six objective functions in 34 

the model calibration.  35 

 36 
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 39 

 Software availability: The software is available free and open source on Github: 40 

https://github.com/mehmetbercan/NSGA-II_Python_for_SWAT_model.  41 

https://github.com/mehmetbercan/NSGA-II_Python_for_SWAT_model
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1. Introduction 42 

The Soil and Water Assessment Tool (SWAT) is a widely used watershed model with 43 

numerous applications around the world for water quantity and quality simulations (Cools et al., 44 

2011; Gassman et al., 2007; Liu et al., 2013).  It can be classified as a semi-distributed 45 

conceptual watershed model that is capable of running on a daily or sub-daily time step over long 46 

time periods. SWAT is able to simulate large watersheds with different management scenarios 47 

where the impact on water supply and non-point source pollution can be assessed (Arnold et al., 48 

1998). For SWAT and other similar watershed models, there are often hundreds of modeling 49 

units in a model for a single watershed and dozens of model parameters used to describe 50 

properties within the model. One of the modeler’s most important and difficult tasks is to 51 

calibrate these model parameters so that the model’s output matches observational data such as 52 

streamflow observations collected within the watershed. 53 

Many algorithms and tools have been developed and applied for calibrating SWAT models. 54 

SWAT-CUP represents one widely used tool in the SWAT community for applying calibration 55 

algorithms to SWAT models. SWAT-CUP includes different calibration algorithms, as well as 56 

routines for sensitivity analysis, validation, and uncertainty analysis of SWAT models 57 

(Abbaspour et al., 2007). There are other procedures and algorithms developed in the scientific 58 

community for calibration that have not yet been included in SWAT-CUP, but that would benefit 59 

SWAT modelers. For example, SWAT-CUP does not include multi-objective calibration 60 

approaches, nor does it include genetic algorithm calibration approaches (Abbaspour, 2013). 61 

SWAT modelers, however, could benefit from these calibration procedures, especially for large 62 

watersheds where multiple streamflow observations are available (Arnold et al., 1999; Bekele 63 

and Nicklow, 2007; Kirsch et al., 2002; Santhi et al., 2001; White and Chaubey, 2005). 64 
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Genetic Algorithms (GAs) offer the ability to effectively solve highly non-linear 65 

optimization problems and have been used for a variety of water resources challenges. Being an 66 

evolutionary algorithm, GAs use principles of genetics and natural selection for optimization 67 

(Haupt and Haupt, 2004). They are well suited for hydrologic models, which usually cannot be 68 

adequately calibrated by gradient-based calibration algorithms. The objective function for each 69 

solution in a GA can be evaluated in parallel computations, which provide computational 70 

advantages (Zhang et al., 2013, 2012). The heuristic search procedure of GAs, relying on 71 

stochastic search rules, increases the probability of finding non-unique solutions. Previous 72 

studies have shown that these properties of GAs allow them to converge to optimal solutions for 73 

a variety of problems (Winston et al., 2003) including the challenge of calibrating watershed-74 

scale hydrologic models (Arabi et al., 2006; Nicklow and Muleta, 2001). 75 

Multi-objective calibration algorithms have been shown to increase model performance for 76 

hydrologic models of large watersheds (Andersen et al., 2001).  In contrast to the more widely 77 

used single-objective calibration algorithms available to SWAT users now in tools like SWAT-78 

CUP, multiple-objective calibration better constrains the calibration process, resulting in a 79 

calibrated model that better matches the physical conditions within the watershed (Niraula et al., 80 

2012). Watershed models may use multiple objective functions in a calibration procedure to 81 

account for potentially competing objectives, even for cases when only a single streamflow 82 

station is available for calibration (e.g., two objectives might be to match peak flows and 83 

maintain annual water volume balance between the model and observations). They can also 84 

allow modelers to take advantage of multiple observational time series (e.g., streamflow at two 85 

or more locations in the watershed or streamflow and soil moisture observations at two or more 86 

locations in the watershed). 87 
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There is a class a calibration routines that combine the benefits of both multi-objective and 88 

genetic algorithm calibration approaches: the so called multi-objective genetic algorithms 89 

(MOGAs). One of the most popular MOGAs is the Non-Dominated Sorting Genetic Algorithm 90 

II (NSGA-II). NSGA-II is a fast and efficient population-based optimization technique that can 91 

be parallelized. The algorithm has been shown to be superior to other MOGAs (Deb et al., 2002; 92 

Zitzler et al., 2000) and it has the potential to reduce calibration time by efficiency in the 93 

algorithm itself and its ability to easily be mapped to parallel computing resources (Deb et al., 94 

2002; Tang et al., 2006; Zitzler et al., 2000). The algorithm has significant improvements over 95 

the original NSGA (Srinivas and Deb, 1994) including adding elitism, reducing the complexity 96 

of the non-dominated sorting procedure, and replacing a sharing function with a crowded-97 

comparison function. The NSGA-II algorithm has also been shown to be an effective tool for 98 

watershed model calibration (Bekele and Nicklow, 2007; Confesor and Whittaker, 2007; Hejazi 99 

et al., 2008; Khu and Madsen, 2005; Shafii and Smedt, 2009; Zhang et al., 2010).  100 

While NSGA-II has been used for calibrating watershed models, there is no known software 101 

implementation of NSGA-II for calibrating SWAT models that is freely available to the 102 

community. One study did report creating a multi-objective calibration tool for SWAT models 103 

using NSGA-II (Bekele and Nicklow, 2007). However, based on personal communication with 104 

the authors, the source code for this implementation is no longer available. The goal of this work, 105 

therefore, is to create an open source and freely-available NSGA-II software library for SWAT 106 

model calibration. We designed the tool to be library that can be used alone or incorporated into 107 

other software tools. We specifically designed the software to be easily integrated into SWAT-108 

CUP given the popularity of this tool with the SWAT community.  We chose to implement the 109 
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library using the Python programming language because of its growing popularity in the 110 

scientific computing community.  111 

In the remaining sections of this paper, we describe the algorithm for integrating NSGA-II 112 

with SWAT for model calibration, then describe the design and implementation of the NSGA-113 

II/SWAT library, and finally present a test case application of the library for calibrating a SWAT 114 

model of the Upper Neuse watershed in North Carolina. As part of this test case application, we 115 

compare the results of the NSGA-II calibration to results from a single-objective calibration to 116 

show the improvement obtained by using the multi-objective NSGA-II algorithm. We have 117 

provided the source code for the NSGA-II/SWAT library as an open source and freely available 118 

repository through GitHub: https://github.com/mehmetbercan/NSGA-119 

II_Python_for_SWAT_model.  120 

 121 

2. The NSGA-II Algorithm and its Integration with SWAT 122 

2.1 Overall Process Flow  123 

In this section we explain the NSGA-II algorithm and how we integrated SWAT calibration 124 

into the algorithm when designing the NSGA-II/SWAT library. For further detail on the NSGA-125 

II algorithm itself, readers are referred to (Deb et al., 2002). For convenience, we provide a 126 

mapping between NSGA-II and SWAT calibration terminology in Table 1. 127 

 128 

https://github.com/mehmetbercan/NSGA-II_Python_for_SWAT_model
https://github.com/mehmetbercan/NSGA-II_Python_for_SWAT_model
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Table 1: Description of NSGA-II terms as they relate to SWAT calibration 129 

NSGA-II Term Description for Application to SWAT Calibration 

Solution 
An individual of a population that includes a SWAT calibration 

parameter set and NSGA-II processing data for the parameter set 

Gene The SWAT calibration parameter set that exists in a solution 

Chromosome 
An individual of a gene that represents a single SWAT calibration 

parameter 

Binary Value Binary representation of chromosome in a user defined number of bits 

 130 

A standard NSGA-II process typically begins with a random parent population Pi (Deb et al., 131 

2002). However, here we start with a Latin Hypercube Sampling (LHS) (See Step 1 in Figure 1) 132 

because better results have been achieved for SWAT models using this approach (Bekele and 133 

Nicklow, 2007). The LHS operator is executed first to create an initial combined population 134 

(Ri=0). We use the subscription “i” to represent a generation (iteration) number. The initial 135 

combined population must be at least twice as large the population size for reasons that will 136 

become clearer in forthcoming steps of the algorithm. 137 

 138 
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Figure 1: The NSGA-II algorithm for SWAT model calibration.  140 

 141 

Each solution in the initial combined population (Ri=0) is considered to be a SWAT 142 

calibration parameter set. The SWAT input files are edited to include this solution, the model is 143 

executed, and the objective functions are evaluated using observational data and the SWAT 144 

model output data (See Steps 2-4 in Figure 1). These model runs can be performed in parallel for 145 

each solution within the population. Once this process has been completed, the solutions within 146 

the population (Ri) are ranked using the results of the objective function evaluation process and a 147 

non-dominating sorting approach (See Step 5 in Figure 1). Details of this non-dominating sorting 148 

approach are provided in Section 2.2.1. 149 

The best performing solutions from Ri as determined by the non-dominating sorting 150 

approach are used to form the parent population (Pi). The number of solutions in the parent 151 

population is determined by the user defined population size. In the case of ties where multiple 152 

solutions exist with the exact same ranking at the cut-off point for creating Pi, a crowded distance 153 
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sorting operator is used to break the tie (See Step 6 in Figure 1). This operator is explained in 154 

Section 2.2.2. In short, the solutions with the larger crowding distance value, which acts as a 155 

dummy fitness in the sorting operator, are chosen to fill the remaining spots in Pi. Using the 156 

parent population, a new child population (Ci+=1) is determined through a selection, crossover 157 

and mutation operator (See Step 7 in Figure 1), which is explained in Section 2.2.3. This entire 158 

procedure is repeated until the termination criteria are met.  159 

 160 

2.2 NSGA-II Operators 161 

We provide in this section details for the specific operators used in the NSGA-II algorithm 162 

that are mentioned in the previous section.  163 

2.2.1 Non-Dominated Sorting 164 

The non-dominated sorting operator is a process of ranking solutions that exist in the 165 

combined population (Ri) (Deb et al., 2002; Srinivas and Deb, 1994). In this operator, the 166 

objective functions are evaluated for given solutions to determine domination. Domination is 167 

established when the objective function evaluations of a solution outperform all other solutions 168 

with the same rank. The process terminates when all members of the combined population (Ri) 169 

have been assigned a rank. 170 

2.2.2 Crowding Distance Sorting 171 

Crowding distance sorting is used to break ties for solutions with the same rank at the cut off 172 

point for being included in the parent population (Pi) (Deb et al., 2002). First, the solutions in 173 

that rank are sorted based on the value of an objective function. Then, a solution is selected and 174 

the distance between that solution and each of the adjacent solutions is calculated. These 175 
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distances are normalized by dividing by the distance between the maximum and minimum value 176 

of the objective function for all solutions. Finally, crowding distance for the solution is 177 

calculated as the sum of the normalized distance for the adjacent solutions.  178 

This process is repeated for all objective functions and the final crowding distance value for 179 

a solution is the summation of crowding distances calculated for all objective functions. It is then 180 

repeated for all solutions within the parent population. One exception is the maximum and 181 

minimum solutions in a rank. Because they do not have adjacent solutions on both sides, they are 182 

typically assigned an arbitrarily large distance value. When breaking ties, the preference is to 183 

select solutions with a large crowding distance value, which means the solution has more distant 184 

neighbors and selecting this solution helps to protect the diversity of the population.  185 

2.2.3 Selection, Crossover, and Mutation 186 

Selection is a process that chooses solutions from a parent population (Pi+=1) that go into a 187 

child population (Ci+=1) based on non-dominated and crowding distance sorting values. It starts 188 

by randomly selecting two solutions from Pi+=1. Then, it selects the solution that has the smaller 189 

rank. If two solutions have the same rank from non-dominated sorting, it selects the solution that 190 

has the greater crowding distance value. This process continues until all spots in Ci+=1 are filled.  191 

After completion of the selection process, the crossover process begins. There are two 192 

techniques for the crossover operation: regular crossover and uniform crossover. In regular 193 

crossover, each pair of adjacent solutions from Ci+=1 are progressively chosen. Then, a random 194 

number is generated and compared to a crossover probability. If the random number is smaller 195 

than the crossover probability, crossover occurs where chromosomes between the two solutions 196 

flip for a randomly generated number of chromosomes.  197 
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Uniform crossover is different from regular crossover in that the crossover happens at a 198 

binary level instead of at a solution level. The uniform crossover goes through all binary values 199 

(0 or 1) (of chromosomes) for every evenly indexed Ci+=1 solution. Uniform crossover happens if 200 

a random number is smaller than the crossover probability. In this case, the binary value is 201 

replaced with the binary value from the corresponding next (oddly indexed) Ci+=1 solution.  202 

Finally, mutation happens through Ci+=1 solutions at a binary level similar to uniform 203 

crossover. The mutation process simply flips the binary value (from 1 to 0, or vice versa) if a 204 

random number is smaller than the mutation probability.  205 

 206 

3. Design and Implementation of the NSGA-II/SWAT Calibration Library 207 

The NSGA-II/SWAT calibration library implements the algorithm summarized in the prior 208 

section where NSGA-II was integrated with SWAT for model calibration. The library was 209 

designed as an object-oriented application programming interface (API) library and implemented 210 

in the Python programing language because it is open source and widely used in scientific 211 

communities. The library was tested against an established NSGA-II implementation written in 212 

the C programing language (Deb et al., 2002) to ensure that it is able to reproduce the same 213 

results. The library was designed to be compatible with SWAT-CUP (Abbaspour, 2013; 214 

Abbaspour et al., 2007), which is a widely used tool for calibration of SWAT models, as 215 

described later in this section.  216 

3.1 Class Diagram 217 

The NSGA-II/SWAT calibration library includes one main class called nsga2 and two utility 218 

classes for lower level NSGA-II and SWAT operations (Figure 2). The nsga2 class is heart of 219 

NSGA-II algorithm and includes operations such as creating child and parent populations. 220 
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During the initialization phase, the nsga2 class stores inputs such as population size, genes, 221 

chromosomes, and objective functions provided by the user. The nsga2 class offers two options 222 

for creating an initial combined population (Ri=0): (i) using the Latin Hypercube Sampling (LHS) 223 

method and (ii) reading the last generation from a previous calibration. The LHS method is 224 

included because, as stated earlier, it creates a better initial solutions for SWAT models (Bekele 225 

and Nicklow, 2007). On the other hand, reading the last generation from the previous calibration 226 

allows users to continue from previous but ultimately unsuccessful calibrations (for example, if a 227 

calibration fails to complete midway through the calibration process). 228 
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 229 

Figure 2: The NSGA-II/SWAT calibration library design.  230 

 231 

The utility classes supplement the calibration process by providing lower-level functionality 232 

specific to the NSGA-II algorithm and for communication with SWAT. The nsga2 class uses 233 

nsga2 utilities to complete methods such as Crossover() or Unicross() required when creating 234 

child populations based on the user’s choice along with Selection() and Mutation() methods. 235 
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Similarly, creating a parent population requires methods like NonDominatedSorting() and  236 

CrowdingDistance(), which are also implemented in the nsga2 utility class. SWAT utilities are 237 

used for objective function calculations using methods like Nash-Sutcliffe() and PercentBias(). 238 

By separating the SWAT-specific functionality into its own class, our design goal was to provide 239 

a pattern that could be repeated when expanding the library to support other hydrologic models.  240 

 241 

3.2 Application for SWAT Calibration 242 

To obtain SWAT model parameter values (genes), the binary values of chromosomes from 243 

solutions of Ci go through a decoding process (decode()). Then, the SWAT model input files are 244 

ready to be edited and executed to calculate objective functions using the SWAT utility class 245 

method, CalculateObjectiveFunctions(). This method first creates a model.in file containing 246 

genes. Then, it executes a batch file called nsga2_mid.cmd that creates the model.out file by 247 

using the model.in file and the SWAT model engine. Finally, the CalculateObjectiveFunctions() 248 

method uses the model.out file and calculates the objective function values by using other SWAT 249 

utility functions such as Nash-Sutcliffe(). This process continues until each solution of Ci is 250 

assigned objective function values. 251 

The nsga2_mid.cmd file is a batch file that executes a series of commands for SWAT 252 

calibration. It uses SWAT executable (swat.exe) and two Python scripts 253 

(SWAT_ParameterEdit.py and Extract_rch.py) in order to create the model.out file. It first runs 254 

SWAT_ParameterEdit.py to change SWAT model parameters based on information in model.in 255 

file. Then, it executes swat.exe to execute the SWAT model using the parameter values included 256 

in the model.in file. Finally, it runs Extract_rch.py to extract SWAT model outputs into 257 

model.out file. The nsga2_mid.cmd file gives flexibility to edit the SWAT side of the calibration 258 
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procedure. To illustrate, inorganic nitrogen flux is the sum of nitrite (NO2) and nitrate (NO3), 259 

which SWAT prints separately. Thus, an intermediate script could be inserted in nsga2_mid.cmd 260 

file to sum these two nitrogen flux terms in model.out file for use in later calibration steps. 261 

 262 

3.3 Compatibility with SWAT-CUP 263 

The NSGA-II/SWAT calibration library was designed so that it can be integrated into 264 

SWAT-CUP. First, we included a Backup folder as a reference to default parameter values as 265 

done in SWAT-CUP. The input/output file and folder names were created following the SWAT-266 

CUP pattern. For example, the SWATtxtInOut folder contains the NSGA-II input and output 267 

folders named NSGA2.IN and NSGA2.OUT. We further followed SWAT-CUP patterns by 268 

creating files with the same structure. The calibration parameter definition file (nsga2_par.def) is 269 

named with the calibration method and followed with _par.def. The structure of nsga2_par.def 270 

file is defined as “X__parameter.ext min max” where the X defines the parameter editing method, 271 

the parameter defines the SWAT parameter, the ext defines the extension of SWAT files, and the 272 

min and max define the minimum and the maximum parameter limits. 273 

In addition to the structure and naming conventions, internal parts of the NSGA-II/SWAT 274 

library also follow the SWAT-CUP pattern. The SWAT_ParameterEdit.py script is equivalent to 275 

SWAT_edit.exe of SWAT-CUP. Both scripts edit SWAT files based on the model.in file created 276 

by the calibration algorithm. Also, the Extract_rch.py script is equivalent to SWAT-CUP’s 277 

extracting script, Extract_rch.exe, which extracts SWAT outputs into model.out file in the 278 

equivalent format. The batch file (nsga2_mid.cmd) mentioned in a prior section (which also 279 

exists in SWAT-CUP) can be used to run extensive SWAT-CUP editing and extracting 280 

executable files, rather than our parameter editing and extracting scripts. All these properties 281 
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were intentionally included to ease the integration of our software library into SWAT-CUP, a 282 

future goal for this research. 283 

 284 

4. Test Case 285 

The NSGA-II/SWAT library is demonstrated for a test case application using a SWAT 286 

model of the Upper Neuse Watershed in North Carolina. The library is used to calibrate this 287 

model to match streamflow records at three observation sites using two fitness criteria. In the 288 

following subsections, we first briefly discuss how we created a SWAT model for Upper Neuse 289 

watershed, second show how we used our NSGA II library to calibrate the SWAT model, and 290 

third present the results of the calibration. The primary goal of this section is to illustrate how the 291 

library would work for end users interested in applying the library to calibrate a SWAT model. A 292 

secondary goal is to explore how the model calibration resulting from using the NSGA-II/SWAT 293 

library compares to the widely used single-objective calibration strategy. 294 

4.1 Study Area and Model Preparation 295 

The Upper Neuse watershed (Figure 3) is a level-8 watershed that includes the Flat, Little, 296 

and Eno River watersheds defined by the United States Geological Survey (USGS) codes 297 

02085500, 0208521324 and 02085070, respectively. The study area has a mild climate and 298 

gently rolling topography. The soil type of the watershed is dominated by silty clay and loam, 299 

and the land cover of the watershed is dominated by forest and cultivated crops.  300 

 301 
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 302 

Figure 3: Study area: the Upper Neuse Watershed in North Carolina, USA.  303 

 304 

Terrain and land cover data were obtained from the United States Geological Survey 305 

(USGS) National Elevation Dataset (NED) and the 2006 version of the National Land Cover 306 

Database (NLCD). Soil data were obtained from the State Soil Geographic (STATSGO) dataset 307 

provided by the United States Department of Agriculture (USDA). Air temperature, wind speed, 308 

and humidity were obtained from the National Climatic Data Center (NCDC). Precipitation data 309 

was obtained from National Weather Service (NWS) for Nexrad-derived rainfall estimates and 310 

from NCDC for gauge observed rainfall estimates. These two precipitation estimates were 311 

combined using the approach described by Ercan and Goodall (2012) to create a composite 312 

rainfall dataset for the watershed area. Lastly, daily average streamflow data from the USGS 313 

National Water Information System (NWIS) were downloaded using the Consortium of 314 

Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic 315 

Information System (HIS) (Tarboton et al., 2009). 316 
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We divided the watershed into subbasins based on the USGS streamflow station locations 317 

and homogeneity of land characteristics. We used threshold values of 10% for soil, slope, and 318 

land cover to reduce variability within the subbasins. The result was a total of 837 Hydrologic 319 

Response Units (HRUs) for the 93 subbasins in the watershed, which is within the 320 

HRU/subbasin ratio range recommended in SWAT documentation. The commonly used settings 321 

were chosen to configure the model that include the Natural Resources Conservation Service 322 

(NRCS) Curve Number (CN) surface runoff method, the Penman-Monteith potential 323 

evapotranspiration method, and the variable storage channel routing method. The ArcSWAT 324 

software program was used for much of the data preprocessing steps required to create the 325 

model. 326 

4.2 Model Calibration 327 

Streamflow observations at the Flat, Little, and Eno watershed outlets were used in the 328 

calibration. For each outlet, the Nash-Sutcliffe (E) and Percent Bias (PB) statistics were used as 329 

measures of the goodness of fit. Therefore, the calibration used six objective functions (3 sites x 330 

2 fitness). We ran Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 331 

1992) available in SWAT-CUP to find the sensitivity of the flow parameters on streamflow 332 

prediction. The six most sensitive parameters were chosen for model calibration with the 333 

acceptable ranges and replacement operations shown in Table 2. 334 

 335 
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Table 2: Model parameters, their calibrated values, acceptable ranges, and replacement 336 

operations 337 

Parameter Value Range Operation 

Alpha_Bf 0.99 0.01-1.00 Replaced 

Cn2 0.07 ±0.25 % Relative 

Ch_K2 30.59 0.01-150.00 Replaced 

Canmx 9.53 0.01-10.00 Replaced 

Esco 0.94 0.01-1.00 Replaced 

Sol_Aw c -0.06 ±0.25 % Relative 

 338 

We used the following settings for calibrating the Upper Neuse watershed model with 339 

NSGA-II. The LHS size was set to 1000 and crossover probability was set to 0.5 using uniform 340 

crossover. The mutation probability and the seed for the random number generation were set to 341 

0.5. Population size and generation number were set to 80. Since our parameters do not have a 342 

wide range, we used 8 bits for binary crossover and mutations. 343 

Figure 4 provides the pseudo code for the NSGA-II calibration to briefly illustrate how it 344 

was used in the case study. The first line initializes the nsga2 class, which reads in the inputs 345 

from the SWATtxtInOut folder such as PopulationSize, GenerationNumber and Observations. 346 

Then the initial combined population is created followed by the generation loop. In the 347 

generation loop, the code first creates the parent population from the combined population. 348 

Second, it creates the child population using the parent population. Then the child population is 349 

used to run the SWAT model and the model’s output is used to evaluate the objective functions. 350 

Finally, the parent and child populations are used to create the new combined population for the 351 

next generation. As seen in Figure 4, this library can easily be adapted to other watershed 352 
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simulation models by modifying the initialization method of the nsga2 class and the 353 

CalculateObjectiveFunctions() process that exists in the SWAT utility class. 354 

 355 

 356 

Figure 4: The pseudo code for applying the NSGAII/SWAT library for calibrating the test case 357 

SWAT model.  358 

 359 

4.3 Calibration Results 360 

The Pareto front solutions for the case study example are shown in Figure 5. There are six 361 

objective functions for 80 solutions. The objective functions are percent bias (PB) and one minus 362 

Nash-Sutcliffe (1-E) for the stations at the outlets of the Flat, Little and Eno watersheds. The 363 

number of solutions is defined by the population size because all solutions in the final generation 364 

are in the first front (ranking). A zero value on the figure indicates an optimal result while higher 365 

values indicate worse model efficiency. The figure shows the range in performance of the three 366 

watersheds in terms of PB and 1-E values. The values ranged between 0.00 and 0.39 for PB and 367 

between 0.23 and 0.88 for E across the three observation sites.  368 

We highlighted the tradeoffs in Figure 5. The thick black line shows the solution selected 369 

with an equal weight for all objective functions, defining the best possible solutions considering 370 

all three objective functions equally. When we put a large weight on the 1-E objectives, we get 371 

NSGAII = Nsga2.nsga2(SWATtxtInOut) 

Ri=0 = NSGAII.CreateInitialPopulation() 
Ri=0 = SWATUtilities.CalculateObjectiveFunctions(Ri=0) 
FOR i = 0 to NSGAII.GenerationNumber 
    Pi = NSGAII.CreateParentPopulation(Ri) 
    Ci = NSGAII.CreateChildPopulation(Pi) 
    Ci = SWATUtilities.CalculateObjectiveFunctions(Ci) 
    Ri+1 = Pi + Ci 
END FOR 
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the thick dashed grey line that slightly improves on 1-E values, but is worse for PB values. In the 372 

last case with the thick grey line, we selected the lowest 1-E value (best E) for the Eno watershed 373 

ignoring all other criteria. In this case, which represents calibration using a single objective 374 

function, the E value improves for the Eno watershed as expected, but the other objective 375 

functions, including PB for the Eno watershed, are worse compared to the equally weighted 376 

multi-objective case.  377 

 378 

Figure 5: Six dimensional NSGA-II Pareto front.  379 

 380 

For visualization of tradeoffs, we displayed the same Pareto front in Figure 5 using two 381 

dimensional graphs. Because of difficulties of showing all six objective functions on a single 382 



 21 

graph, we averaged fitness values over the Flat, Little and Eno watershed outlets in Figure 6b. 383 

Significant tradeoffs are illustrated between E and PB objective functions for the three outlets 384 

(Figure 6a) as was also shown by Bekele and Nicklow (2007). This illustrates the utility of a 385 

multi-objective calibration of SWAT models by attempting to balance multiple competing 386 

objectives when selecting optimal parameter sets.  387 

The equally weighted objective functions are also highlighted in Figure 6. Better PB and 1-E 388 

values exist on Figure 6a. However, these values are connected to other objective functions that 389 

are much worse (e.g. the grey dashed and solid lines in Figure 5). Figure 6a indicates similar 390 

responses between the three watersheds, but a more significant relationship between the Flat and 391 

Little watersheds. This is expected as all the watersheds are in the same region and the Eno 392 

watershed is partially urbanized whereas the Flat and Little are not. 393 

 394 

 395 

Figure 6: (a) NSGA-II Pareto front with (b) results averaged across the three watersheds. 396 

 397 

Table 2 shows the parameter set values for the chosen solution (objective functions are 398 

equally weighted). We ran the SWAT model based on this solution and prepared the model 399 



 22 

statistics against observations (Table 3). The daily and monthly statistics showed good 400 

agreement between simulated and observed streamflows for each site. PB values are considered 401 

to be “very good” for both the calibration and validation periods except for the Flat River 402 

watershed during the validation period, which is considered to be “good”  (Moriasi et al., 2007). 403 

Monthly E values, on the other hand, were considered to be “good” for the calibration period and 404 

“very good” for the validation period (Moriasi et al., 2007). Lastly, daily statistics showed very 405 

good accuracy compared to previous SWAT studies (Gassman et al., 2007), indicating the 406 

strength of the calibration method. 407 

 408 

Table 3: Results of the fitness values during the calibration and evaluation time periods for the 409 

Flat, Little, and Eno watersheds. 410 

 

2005-2008a 2009-2012b 

Watershed E Ec R2 R2c PB E Ec R2 R2c PB 

Flat 0.74 0.73 0.75 0.74 0.04 0.62 0.8 0.62 0.82 -0.13 

Little 0.75 0.72 0.76 0.73 0.08 0.61 0.8 0.61 0.81 -0.09 

Eno 0.65 0.65 0.73 0.7 0.02 0.59 0.77 0.64 0.82 -0.11 
a Calibration period 

b Evalutation period 

c Daily predicted and observed values aggregated to monthly 
 411 

The solution with the equally weighted objective functions within the Pareto front is also 412 

illustrated in Figure 7. Similar to Table 3, the Little and Flat watersheds are slightly better at 413 

matching high flows (better E value) compared to the Eno watershed. All of the watersheds tend 414 

to underestimate streamflow for the calibration period and overestimate streamflow for the 415 

evaluation period. In general, the monthly accumulated streamflow values support the accuracy 416 
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of the model as both the calibration and evaluation periods generally fit well to observed 417 

streamflow for all three sites. 418 

 419 

 420 

Figure 7: Comparison of monthly simulated and observed streamflow. 421 

 422 

Finally, we examined the solution with the best E value for Eno watershed (highlighted with 423 

the thick grey line in Figure 5). This case is equivalent to single-objective calibration as we 424 

selected a solution with regard to only one objective function and ignored all other objective 425 

functions. When using this parameter set, the E value for the Eno watershed improved by 0.06 426 

and 0.02 for calibration and validation periods, respectively, compared to the results when using 427 

the parameter set from the equally weighted multi-objective solution. However, all other 428 

statistics for the calibration and validation period for the three watersheds decreased when using 429 
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the parameter set from the single objective optimization. The magnitude of decrease in fitness 430 

values was often similar to the gain in E for the Eno watershed. However, the PB values 431 

deteriorated into an unacceptable model range (Moriasi et al., 2007) where PB values ranged 432 

from 0.31 to 0.38 and 0.15 to 0.16 for calibration and validation periods, respectively, for the 433 

three watersheds. This provides evidence to support the claim that multi-objective calibration 434 

increases confidence in the model's predictive capabilities compared to using a single-objective 435 

calibration routine. 436 

 437 

5. Conclusion 438 

The powerful Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is a popular multi-439 

objective optimization genetic algorithm (MOGA) that has been shown to be effective for 440 

calibrating watershed models including SWAT. Because there is no known software for linking 441 

NSGA-II with SWAT for model calibration, we created an open source NSGA-II/SWAT library 442 

using the Python programming language. We designed the library to be used either as a standard 443 

alone tool for those experienced with Python, or as a library that can be incorporated by 444 

developers into existing third-party Graphical User Interface (GUI) software tools. In particular, 445 

a design goal was to allow for easy integration of the NSGA-II/SWAT library with the widely 446 

used SWAT-CUP program that includes many algorithms for calibrating SWAT models, but 447 

currently does not include the NSGA-II algorithm.  448 

We demonstrated how the NSGA-II/SWAT library could be used through a test case 449 

application for calibrating a SWAT model of the Upper Neuse Watershed in North Carolina. The 450 

test case considered six objective functions: maximize Nash-Sutcliffe (E) and minimize Percent 451 

Bias (PB) as the fitness coefficients for three streamflow stations located in the watershed. Six 452 
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model parameters were used in the calibration based on results obtained from using the GLUE 453 

sensitivity analysis procedure. Results from applying the NSGA-II/SWAT library to this test 454 

case showed large tradeoffs between fitness coefficients in the study watershed as illustrated in 455 

the Pareto front. In general, the Eno watershed had lower E values compare to the other two 456 

watersheds, and we suspect that this is due to urbanization within the Eno watershed that is not 457 

present in the other two watersheds. 458 

We chose the optimal parameter set from the Pareto front when weighting all objective 459 

functions equally and used this parameter set to create the calibrated SWAT model. Results from 460 

running the calibrated SWAT model during the time period used to calibrate the model were E 461 

values ranging between 0.65 and 0.75 and PB values ranging between 0.02 and 0.08 for the three 462 

streamflow stations used for calibration. The results from running the model during an 463 

independent evaluation period not used for calibrating the model showed E values ranging 464 

between 0.59 and 0.62 and PB values ranging between -0.13 and -0.09. All results for the 465 

calibration and evaluation periods were considered to have satisfactory performance (Moriasi et 466 

al., 2007) and improved results obtained from executing the SWAT model using an optimal 467 

parameter set generated when considering only one of the six objective functions. Therefore, the 468 

model calibration resulting from using the NSGA-II/SWAT library resulted in a well-calibrated 469 

SWAT model that increases our confidence in the model's predictive capabilities compared to 470 

the more common approach of using a single objective function. 471 

The NSGA-II/SWAT tool was written to allow for easy expansion to include other 472 

calibration algorithms and interfaces for other hydrological and environmental models that might 473 

require multi-objective calibration. By having the source code in a public repository, the code 474 

can be easily obtained and extended by others to include these enhancements. Furthermore, the 475 
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software was designed in a way so that it can be easily incorporated into front-end Graphical 476 

User Interface (GUI) software tools, most notably SWAT-CUP. Future work incorporating the 477 

library into SWAT-CUP in particular would be ideal so that it can leverage the existing data 478 

visualization capabilities already available through SWAT-CUP and provide a new and powerful 479 

calibration routine to SWAT-CUP users.  480 
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