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 ABSTRACT: Climate change poses water resource challenges for many already water stressed 18 

watersheds throughout the world. One such watershed is the Upper Neuse watershed in North 19 

Carolina, which serves as a water source for the large and growing Research Triangle Park 20 

region. The aim of this study is to quantify possible changes in the watershed’s water balance 21 

due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model 22 

forced with different climate scenarios for baseline, mid-century, and end-century time periods 23 

using five different downscaled General Circulation Models. Before running these scenarios, the 24 

SWAT model was calibrated and validated using daily streamflow records within the watershed. 25 

The study results suggest that, even under a mitigation scenario, precipitation will increase by 26 

7.7% from the baseline to mid-century time period and by 9.8% between the baseline and end-27 

century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 28 

7.6%, water yield would increase by 25.1 and 33.2%, and soil water would increase by 1.4% and 29 

1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large 30 

seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by 31 

up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding 32 

seasonal changes will be critical for mitigating the impacts of climate change on water resources. 33 
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 INTRODUCTION 35 

Climate change is expected to alter the water cycle across global to regional scales (Hagemann et 36 

al., 2013). The high level of uncertainties embedded in the assessment of climate change impacts 37 

on hydrologic processes and this dynamic across spatial scales makes it necessary to investigate 38 

impacts for watersheds and regions across the globe. There is a growing body of research aimed 39 

at providing insight to climate change impacts at a regional-scale (e.g., Jha et al., 2006; 40 

Pradhanang et al., 2013). Investigating local impacts for watersheds across the globe is important 41 

to better understand general trends and controlling factors for global water resource impacts due 42 

to climate change. Therefore, a motivation for this study is to add to the growing literature of 43 

watershed-scale climate change impacts by studying potential climate change impacts on the 44 

Upper Neuse Watershed, an important water supply source for the large and growing Research 45 

Triangle Park (RTP) region.  46 

In addition to climate change, population increase is also expected to result in water stress in 47 

the RTP region and throughout the Southeast United States (Sun et al., 2008). In previous years, 48 

the Southeast United States region has experienced multiple droughts (1986–1988, 1998–2002, 49 

2007–2008, 2016) (Weaver, 2005; Keellings and Engström, 2019), increasing the vulnerability 50 

of the region to water deficits. The Upper Neuse watershed includes the public water supplies for 51 

most of Wake and Durham counties. Falls Lake supplies drinking water to Wake County, where 52 

Raleigh is located, and upstream lakes (Little River reservoir and Lake Michie) supply drinking 53 

water to Durham County (Li et al., 2014; Palmer and Characklis, 2009). Prior research suggests 54 

that the Upper Neuse watershed will experience a 14% decrease in water supply due to climate 55 

change and will experience a 21% increase in water demand due to industrialization and growth 56 

(Marion et al., 2014). While they made use of a General Circulation Model (GCM), Marion et al. 57 

did not use a locally calibrated watershed model forced with downscaled GCM outputs. Some 58 
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studies addressed the water deficit problem in the RTP region by exploring inter-basin transfer 59 

(IBT) (e.g., Li et al., 2014 and Palmer and Characklis, 2009). However, these studies focused 60 

primarily on historical data and did not explicitly consider future climate effects on the RTP 61 

region. This study advances on these prior studies within the region by making use of 62 

downscaled climate projection datasets along with a calibrated watershed-scale hydrologic 63 

simulation model to gain insight into potential water balance changes within the watershed by 64 

the end of the century.  65 

 Golembesky et al. (2009) and Devineni et al. (2008) estimated short-term inflow to Falls 66 

Lake, the drinking water source for Wake County, using historical streamflow and weather 67 

records along with GCM climate change projections. Both studies addressed the record shortages 68 

in North Carolina's local and statewide water supply systems by developing multi-model 69 

streamflow forecast methods for decision makers to take appropriate conservation measures 70 

before a period of drought. However, these studies focused on short-term decision making and 71 

did not take advantage of GCMs for long-term impact assessments in their methodology. The 72 

current study also makes use of multiple GCMs and different emission scenarios to better 73 

understand how variability across projections impacts uncertainties in watershed-scale water 74 

balance terms, but does so for long term rather than short term planning.   75 

Sun et al. (2008) used future climate data from two GCMs along with future population and 76 

land use change scenarios to estimate water supply and water demand on 8-digit Hydrologic Unit 77 

Code (HUC) watersheds in the Southeast United States, including the 8-digit HUC Upper Neuse 78 

watershed. Similarly, Marion et al. (2014) calculated water supply and water demand on 8-digit 79 

HUC watersheds in the Southeast using four different climate models for future climate 80 

projections. Although both studies gave insight into the future water deficit problem in the 81 
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Southeast US and the Upper Neuse watershed, they used generalized models on a monthly time 82 

step with a coarse spatial resolution (8-digit HUC). In this study, we use a more detailed 83 

physically-based hydrological model and 5 downscaled GCMs to gain more insight into changes 84 

that may occur to hydrological processes and water balances within the watershed by the mid-85 

century and end-century periods. 86 

One example of using physically-based hydrological models with GCMs for other 87 

watersheds and regions is illustrated by Jha et al. (2006). The researchers used a semi-distributed 88 

model, Soil and Water Assessment Tool (SWAT), to assess the effect of future climate change 89 

on hydrologic components of the Upper Mississippi River Basin. The SWAT model was 90 

calibrated and evaluated with historical observations and used future precipitation and 91 

temperature data from 6 different GCMs. They also evaluated the sensitivity of the Upper 92 

Mississippi River Basin to atmospheric, precipitation, and temperature changes. Their results 93 

indicated that the basin was very sensitive to the climate change scenarios and that, when forced 94 

with GCM climate change projections, mean annual streamflow generally increased, with one 95 

GCM resulting in a 51% increase in mean annual streamflow. Another example is Pradhanang et 96 

al. (2013) who studied climate change effects in a New York City water supply watershed by 97 

using SWAT with an ensemble of 9 GCMs. Their study results suggest increased winter 98 

discharge and greatly decreased spring discharge due to early melting of snow in the watershed. 99 

Similar SWAT model studies were able to identify specific changes in local hydrology and 100 

ecosystem consequences due to climate change for other watersheds across the globe 101 

(Bajracharya et al., 2018; Chattopadhyay et al., 2017; Ficklin et al., 2013; Meaurio et al. 2017; 102 

Moradkhani et al., 2010; Park et al., 2011; Reshmidevi et al., 2018; Sunde et al., 2017; Ye and 103 
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Grimm, 2013). This study builds on this growing body of research by focusing on a key 104 

watershed for the expanding Research Triangle Park region. 105 

In summary, the objective of this study is to better understand the hydrological impacts of 106 

climate change for the Upper Neuse watershed, an important water supply source for the 107 

growing Research Triangle Park region of North Carolina. The SWAT model was calibrated and 108 

validated for the watershed using historical observational data, and then an ensemble of five 109 

GCMs were used within the SWAT model to quantify how future weather conditions and future 110 

projections of atmospheric CO2 concentrations would change key water balance terms in the 111 

watershed. The results of this study can aid decision makers in the region when planning for 112 

future hydrologic and water supply conditions. Additionally, the results serve as a contribution to 113 

the growing literature using physically-based hydrology models to investigate local impacts of 114 

climate change on critical watersheds across the globe.  115 

 116 

MATERIALS AND METHODS 117 

 Study Area 118 

The Upper Neuse Watershed in North Carolina has a total drainage area of 1,373 km2 with 119 

gently rolling topography, is the head watershed of the Neuse River Basin (Figure 1), and serves 120 

as a public water source for the growing Research Triangle Park region of North Carolina. The 121 

Upper Neuse Watershed contains three main tributaries: the Flat, Little, and Eno Rivers. Each of 122 

these tributaries includes a streamflow gauging station maintained by the United States 123 

Geological Survey (USGS). Little Reservoir Lake and Lake Michie in the Upper Neuse 124 

Watershed provide drinking water to the City of Durham. Moreover, the upper part of the Neuse 125 

watershed drains into Falls Lake, which provides drinking water for Raleigh and six other 126 
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municipalities in eastern Wake County. This region is one of the fastest growing in the US and 127 

has issues with the availability of enough fresh water (Sun et al., 2008).  128 

[Figure 1 goes here] 129 

 130 

Hydrological Model Setup and Data Preparation 131 

The SWAT model for the Upper Neuse Watershed was created using USGS 10-m resolution 132 

National Elevation Datasets (NED), the 30-m resolution 2011 National Land Cover Dataset 133 

(NLCD) (both NED and NLCD are obtained from: U.S. Geological Survey, The National Map. 134 

Accessed December 2018, https://viewer.nationalmap.gov/basic/#startUp), the United States 135 

Department of Agriculture (USDA) Soil Survey Geographic (SSURGO) soil dataset (Soil 136 

Survey Staff, 2018), and weather data from historical gauges and radar observations. Using the 137 

method presented by Ercan and Goodall (2012), NEXRAD-derived radar rainfall from National 138 

Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) (NOAA 139 

National Weather Service (NWS) Radar Operations Center, 1991) and gauge observed rainfall 140 

from NOAA’s National Climatic Data Center (NCDC) (NOAA National Centers for 141 

Environmental Information, 2001) were combined to derive an area-average time series for the 142 

watershed. From the DEM, elevation in the Upper Neuse watershed ranges from 50 to 255m and 143 

has an average elevation of 162.5m. The slope of the watershed ranges from 0 to 223.6%, with 144 

an average slope of 6.9%. From the NLCD dataset, the watershed is dominated by forest (mostly 145 

deciduous forest) (54.4%), pasture lands (19.4%), and developed area (mostly open space 146 

development) (14.1%) (Figure 2). Herbaceous, scrub, wetland, open water, cultivated crops, and 147 

barren land cover 5%, 2.6%, 2%, 1.5%, 0.8%, 0.1% of the watershed, respectively. From 148 

SURRGO dataset, the dominant soil types in the watershed are silt loam and sandy loam, and the 149 
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hydrologic soil groups are mainly B and D (Figure 2). The watershed was divided into subbasins 150 

based on the USGS streamflow station locations and the drainage structure within the watershed. 151 

Threshold values of 10%, 14%, and 14%, for soil, slope, and land cover, respectively, were used 152 

to define Hydrologic Response Units (HRUs) to represent variability within the subbasins. In the 153 

final model, there were 932 HRUs for 93 subbasins, which is in line with the HRU/subbasin ratio 154 

range of 1-10 recommended in the SWAT manual (Arnold et al., 2012). The Natural Resources 155 

Conservation Service (NRCS) Curve Number (CN) surface runoff method (Boughton, 1989), the 156 

Penman-Monteith evapotranspiration method (Allen, 1986), and the variable storage channel 157 

routing method (Williams, 1969) were used in our SWAT model. Further detail on the data and 158 

methods used to create the SWAT model can be found in Ercan and Goodall (2014 and 2016).  159 

[Figure 2 goes here] 160 

We identified the most sensitive model parameters using the Generalized Likelihood 161 

Uncertainty Estimation (GLUE) in the SWAT CUP program (Abbaspour, 2007) based on 25 162 

parameters effecting streamflow (Beven and Binley, 1992) (Table 1). Then, we calibrated the 163 

SWAT model using these most sensitive parameters and the Non-Sorting Genetic Algorithm II 164 

(NSGA-II) method (Deb et al., 2002) by comparing the average daily simulated streamflow 165 

against the records data. The freely available NSGA-II Python tool for SWAT model calibration 166 

described in Ercan and Goodall (2016) was used for calibration because of its auto-calibration 167 

capability based on multi-objective genetic algorithms (MOGAs). The Flat, Little and Eno 168 

watershed outlets were set as objective-sites for maximizing the Nash-Sutcliffe Efficiency (NSE) 169 

(Nash and Sutcliffe, 1970) and minimizing Percent Bias (PB) as goodness of fit criteria for the 170 

simulated streamflow. Therefore, a total of six objective functions (3 streamflow sites * 2 fitness 171 

measures) were used to calibrate the model. The observed daily flow data for the 3 watershed 172 
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outlets were obtained using USGS National Water Information System (U.S. Geological Survey, 173 

National Water Information System. Accessed December 2018, https://waterdata.usgs.gov/nwis).  174 

When evaluating the performance of the calibrated model, in addition to NSE and PB, we used 175 

RMSE-observations standard deviation ratio (RSR) (Moriasi, et. al, 2007) and coefficient of 176 

determination (R2). 2003-2004 was used as the simulation warm-up period and 2005-2008 was 177 

used as the calibration period. The model evaluation period was 2009-2011. 178 

Downscaled Future Climate Data 179 

General Circulation Models (GCMs) are used to project climatic conditions by coupling 180 

various earth system models, such as the atmosphere, solid and liquid water bodies, and the land 181 

surface (Fowler et al., 2007). Each GCM contains differences in model structures, physical 182 

representations, and parameterizations. Furthermore, different emission scenarios for each model 183 

will result in different future projections. Therefore, multiple GCMs along with multiple 184 

emission scenarios as a model ensemble can be used to represent a range of future projections 185 

when studying climate change impacts (Brekke et al., 2008; Pierce et al., 2009; Reichler and 186 

Kim, 2008). 187 

Although GCMs offer the potential to study climate change and variability, they are 188 

relatively coarse, only a few hundred kilometers in spatial resolution, for use in local watershed 189 

impact studies (Gates, 1985). Two types of downscaling techniques, dynamical and statistical, 190 

are typically used for downscaling coarse GCM data to finer resolutions for watershed level 191 

studies (Fowler et al., 2007). Dynamical downscaling models are Regional Climate Models 192 

(RCMs) with a finer resolution focusing on certain regions embedded within a GCM. These 193 

models are computationally intensive and strongly dependent on GCM boundary forcing with a 194 

limited number of scenario ensembles available for them. Statistically downscaled models are 195 

https://waterdata.usgs.gov/nwis
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able to translate coarse GCM outputs to finer resolution climate projections based on spatial 196 

trends within historical climate observations. These models are computationally inexpensive, 197 

easily transferable to other regions, and based on standards and accepted statistical procedures 198 

(Fowler et al., 2007). 199 

In this study, the statistically downscaled World Climate Research Programme's (WCRP's) 200 

Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model dataset was used. We 201 

used the Localized Constructed Analog (LOCA) downscaled CMIP5 daily climate projections 202 

(Pierce et al., 2014; Pierce et al., 2015) obtained in NetCDF format at 1/16o resolution, which is 203 

between 5.6 and 5.8km grid cell size in our study area. The downscaled field in LOCA is 204 

produced point-by-point from a single best match analog day, while in the other constructed 205 

analog methods, multiple analog days are averaged to obtain the downscaled field. LOCA has 206 

been shown to obtain a better downscaled field compared to other constructed analog methods by 207 

avoiding issues associated with averaging numerous analog days (e.g., high spatial 208 

autocorrelation, a reduction in extremes, and the production of days with low levels of 209 

precipitation). The bias correction method that was used to develop the high resolution (1/16 o) 210 

LOCA downscaled CMIP5 daily projections are described by Pierce et al. (2015). The 211 

projections obtained from LOCA, include three daily variables: precipitation, maximum 212 

temperature, and minimum temperature. We converted the downscaled CMIP5 data from the 213 

NetCDF format to the format required by SWAT for use in our climate scenarios in the Upper 214 

Neuse watershed. We used an areal average spatial interpolation method to convert daily 215 

precipitation, and maximum and minimum temperature values, from the downscaled CMIP5 data 216 

grids into our Upper Neuse SWAT model subbasins (Figure 1).  217 
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Representative Concentration Pathways (RCPs) predict a range of future changes in the 218 

atmospheric greenhouse concentration as a result of human activities (Taylor et al, 2012). 219 

Among the RCPs, we used RCP4.5, called the mitigation scenario, and RCP8.5, called the high 220 

emission scenario. The RCP4.5 scenario assumes a world using technologies and strategies 221 

leading to stabilized radiative forcing before 2100 at 4.5 W m−2. Conversely, in the RCP8.5 222 

scenario, high population growth and lack of highly developed technologies leads to radiative 223 

forcing reaching to a high level, i.e., 8.5 W m−2 in 2100 (van Vuuren et al., 2011). 224 

The 5 GCMs shown in Table 2 were used along with the calibrated SWAT model to 225 

estimate climate change impacts. The results focus on three key water balance terms: 226 

evapotranspiration, water yield, and amount of water in the soil profile. Historical simulations, 227 

and future projections for daily precipitation, maximum surface temperature, and minimum 228 

surface temperature are available for the periods of 1950-2005 and 2005-2099, respectively. The 229 

base conditions (base period), mid-century and end-century are defined as the 1961-2000, 2046-230 

2065 and 2081-2099 time periods, respectively. We ran SWAT for each length of time with the 231 

first 5 years in the period as warm-up. The average atmospheric CO2 concentrations were 232 

obtained from the literature. We used CO2 concentrations of 330ppm for the base period (Jha et 233 

al., 2006; Wu et al., 2012), 490 (RCP4.5) and 575ppm (RCP8.5) for the mid-century period, and 234 

522 (RCP4.5) and 838ppm (RCP8.5) for the end-century period (Yang et al., 2018). Unavailable 235 

weather data for historical simulations and future projections such as humidity, solar radiation 236 

and wind speed were generated by the SWAT weather generator file (Arnold et al., 2012). Like 237 

prior studies on this topic (e.g., Pradhanang et al. 2013), we assumed no significant changes to 238 

land cover or land use over the study period to isolate the impact of climate change on water 239 

resources. 240 

https://www.sciencedirect.com/science/article/pii/S0022169417301087?via%3Dihub#b0575
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RESULTS AND DISCUSSION 241 

Calibration and Validation Results 242 

Table 1 shows the selected calibration parameter values from the Pareto solutions that were 243 

produced at the end of the calibration process. The “range” and “change type” columns give the 244 

defined parameter limits and the approach used to adjust the parameter values in the SWAT files. 245 

SWAT model calibration with the NSGA-II Python tool (Ercan and Goodall, 2016) gave 246 

multiple sets of parameters that have the best calibration performance. From the multiple sets of 247 

calibration parameters that were identified as having a good match with observed streamflow, 248 

additional properties of the watershed were then used to select the final set of calibration 249 

parameters used in the subsequent analysis (Table 1). Most noteably, parameters were selected 250 

so that the baseflow contribution to total streamflow were in line with expected values based on 251 

regional analysis by the United States Geological Survey base-flow index Grid estimate 252 

(Wolock, 2003). The ratio in our calibrated model is 0.45 which is comparable to the USGS 253 

base-flow index Grid estimate of 0.31 for our study area. This difference may be justified by 254 

knowing that the simulation years used by USGS to calculate base-flow index grid for the 255 

conterminous United States may not completely match with our baseline period, and the USGS 256 

uses the actual measured discharge at fixed observation locations but we simulated the discharge 257 

throughout the study watershed using the downscaled precipitation and maximum and minimum 258 

daily temperature (the downscaling technique and the selection of the GCMs introduce some 259 

uncertainties here as well). Also, certain parameter values, such as the main channel hydraulic 260 

conductivity (ch_k2), Manning's n for the main channel (Ch_N2), and Curve Number (CN2) 261 

were selected from among that calibrated parameter sets to realistically match assumed 262 
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conditions within the study watershed and to be consistent with estimated values for these 263 

parameters derived from baseline soil and land use/land cover datasets. 264 

Following calibration for the 2005-2008 time period, the final selection of calibrated 265 

parameters was used in the SWAT model in a validation model run for the 2009-2011 time 266 

period (Table 3). The guidelines for hydrological model evaluation introduced by Moriasi et al. 267 

(2007; 2015) were used to evaluate both the calibration and validation periods of the SWAT 268 

model. According to Moriasi et al. (2015), a discharge simulation is satisfactory at a daily or 269 

monthly time step when NSE > 0.5, PBIAS < 15% and R2 > 0.6. At a monthly time step the 270 

discharge simulation is satisfactory when NSE > 0.5, PBIAS < 25% and RSR ≤ 0.7 (Moriasi et 271 

al., 2007). Based on these guidelines, our SWAT model is satisfactory for the daily and monthly 272 

time steps during the calibration period. The analysis of the validation daily and monthly 273 

statistics indicates satisfactory performance with the exception of daily R2 for the Little 274 

watershed (0.59), which is slightly below the satisfactory range. Figure 3 shows a comparison 275 

between observed and SWAT simulated streamflow at the Flat, Little and Eno watershed outlets. 276 

The daily observed and simulated streamflow values were accumulated to monthly values for 277 

comparison. The agreement between the graphical representations of the observed streamflow 278 

and the SWAT simulated streamflow for all three outlets also provides a visual measure of the 279 

model’s predictive skill. 280 

[Figure 3 goes here]   281 

Overall Impact of Climate Change Scenarios on Water Balance Terms 282 

Using the calibrated SWAT model along with the downscaled climate projections resulted in 283 

a consistent increase in precipitation, water yield and soil water, and a decrease in 284 

evapotranspiration (Table 4). Precipitation, on average, increased by 7.8 and 9.8% over the 285 
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baseline for the mitigation scenario for the mid-century and end-century, respectively. For the 286 

high emission scenario, average precipitation increased by 9.4 and 13.7% over the baseline for 287 

the mid-century and end-century, respectively. Both the mitigation and high emission scenarios 288 

predicted that, on average, the rate of precipitation increase for the end-century period will be 289 

considerably more than the mid-century period. 290 

The decrease in evapotranspiration is substantial in the high emission scenario because of 291 

the high atmospheric CO2 concentrations projected in the RCP8.5 scenario (575 and 838ppm for 292 

mid-century and end-century compared to 330ppm for baseline). The increased atmospheric CO2 293 

concentration results in decreased transpiration due to plants having more efficient water use 294 

(Battipaglia et al., 2013; Kauwe et al., 2013; Lammertsma et al., 2011; Morison, 1987). On the 295 

other hand, evaporation depends mainly on temperature and water availability. The projected 296 

increased precipitation ensures that there will be enough water available for evaporation. Both 297 

minimum daily temperature and maximum daily temperature for both mid-century and end-298 

century periods under both emission scenarios are projected to increase. Under the mitigation 299 

scenario, the minimum daily temperature is projected to increase by 1.9 and 3.3 °C for the mid-300 

century and end-century, respectively; the high emission scenario projects minimum daily 301 

temperature increases of 2.7 and 4.6 °C for the mid-century and end-century, respectively. 302 

Maximum daily temperature is projected to increase by 2.1 and 2.7 °C for the mitigation scenario 303 

and by 2.8 and 4.6 °C for the high emission scenario for the mid-century and end-century, 304 

respectively. Despite these changes, the differences in temperature and precipitation that would 305 

drive more evapotranspiration are outweighed by changes in atmospheric CO2 concentration. 306 

Therefore, evapotranspiration will decrease due to the large decrease in transpiration. These 307 
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results show the important role that transpiration plays in the water cycle, especially for regions 308 

like the Upper Neuse Watershed that are dominated by forest cover and cultivated crops.  309 

 The precipitation increases and evapotranspiration decreases resulted in increases in the 310 

amount of water stored in the soil profile and the water yield. The amount of water in the soil 311 

profile (or soil water, for short) increased by 1.9% and 2.5% under the mitigation scenario for the 312 

mid-century and end-century periods, respectively. A greater increase in soil water, 2.6% for 313 

mid-century and 5.2% for end-century, was predicted under the high emission scenario given the 314 

larger decreases in evapotranspiration. Water yield, the total amount of water from HRUs that 315 

contributes to stream flow, increased substantially for the end-century high emission scenario 316 

(70.9%), indicating the effect of large decreases in evapotranspiration and the considerable 317 

increase in precipitation. 318 

Water yield has three main components: surface runoff, lateral flow, and groundwater 319 

discharge (Table 5). According to the models, the largest contributor to water yield (19.89mm 320 

per month for the baseline period) is the groundwater discharge (about 9.05mm per month for the 321 

baseline period). The surface runoff contributed 7.13mm per month for the baseline period while 322 

lateral flow contributed 3.70mm per month for the same period. The model results showed that 323 

all three components increased for the mid-century and end-century periods under both the 324 

mitigation and high emission scenarios. For the mitigation scenario, surface runoff increased by 325 

25.8 and 33.1%, lateral flow increased by 18.4 and 24.0%, and groundwater discharge increased 326 

by 29.5 and 40.1% for the mid-century and end-century, respectively. For the high emission 327 

scenario, surface runoff increased by 32.5 and 71.3%, lateral flow increased by 25.3 and 45.5%, 328 

and groundwater discharge increased by 42.2 and 80.9% for the mid-century and end-century, 329 

respectively. 330 
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Seasonal Impact of Climate Change Scenarios on Water Balance Terms 331 

A monthly aggregation of the water balance terms provides a means for understanding 332 

potential seasonal changes in the Upper Neuse watershed (Figure 4). On a monthly time step, 333 

precipitation under the mitigation and high emission scenarios for both mid-century and end-334 

century periods shows clear increases compared to the baseline conditions (except for the mid-335 

century period under the high emission scenario in August, and the end-century period under the 336 

high emission scenario in June which both experience a decrease, and the mid-century period 337 

under the mitigation scenario in July which remains almost unchanged). The largest increase in 338 

precipitation, 18mm (17%) for the mitigation scenario and 25mm (23%) for the high emission 339 

scenario, was seen in September. The lowest increases in precipitation occurred in November 340 

with 5mm (7%) for the mitigation scenario and 3mm (4%) for the high emission scenario.  341 

[Figure 4 goes here] 342 

Evapotranspiration also had clear seasonal patterns, decreasing from baseline conditions for 343 

all months. The winter to mid-spring months had smaller decreases in evapotranspiration of 344 

between 0.8 to 9.5 mm (3-27%); the mid-spring to mid-fall month had larger decreases in 345 

evapotranspiration from 2 mm (3%) to 18 mm (23%). The smaller decrease during winter and 346 

spring was due primarily to increased temperature while the larger decrease during summer and 347 

fall was due to decreases in transpiration caused by increased atmospheric CO2 concentration. 348 

Plant activities play a major role in evapotranspiration during summer and fall when plants are 349 

actively developing and there is often less precipitation compared to spring months (Allen et al., 350 

1998).  351 

Water yield expectedly increased, due largely to the increase in precipitation and the 352 

decrease in evapotranspiration. It increased from between 2.2mm (11%) to 22mm (102%) 353 
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happening in August for the mid-century period under the high emission scenario and in 354 

September for the end-century period under the high emission scenario, respectively. Soil water 355 

increased during May to January while experiencing less increase from February to April. This 356 

increase in the seasonal water cycle could result in increased flooding risk caused by higher 357 

antecedent soil moisture conditions in particular in the summer and fall in the RTP region.  358 

To this point of increased flood risk, Figure 5 shows the average monthly water yield terms 359 

for the baseline, mid-century and end-century periods under the mitigation and high emission 360 

scenarios. Future surface runoff projections show substantial increases for September and March, 361 

but less increase for the other months of the year (except for the mid-century period under the 362 

RCP8.5 scenario which shows a decrease during August). Both lateral flow and groundwater 363 

discharge also consistently increases across all months, with the largest increase happening 364 

during September, October and March compared to the base conditions for both the mid-century 365 

and end-century periods. Overall, the modeled impact of climate change on water yield terms 366 

during the end-century period is often twice as much as the mid-century for the high emission 367 

scenario. The mitigation scenario, however, shows much less difference between the mid-century 368 

and end-century time periods. 369 

[Figure 5 goes here] 370 

  371 

Variability Across GCMs  372 

It is important to also consider the variability of model results derived from using different 373 

GCMs to understand the uncertainty of future climate impacts on the Upper Neuse Watershed 374 

hydrology. Figure 6 shows the changes in the water balance terms from the base period to the 375 

mid-century period for the two emission scenarios across the five GCMs; Figure 7 does the same 376 
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for the end-century period. Most GCMs predict increased precipitation across all months for both 377 

emission scenarios and the mid-century and end-century periods, despite the expected 378 

uncertainty about future conditions. The variation in the SWAT simulated evapotranspiration 379 

across the models is much lower compared to the other water balance terms. This may be 380 

because the atmospheric CO2 concentration, which seems to have a substantial effect on 381 

evapotranspiration in the model, is considered to be the same across all GCMs in a given 382 

emission scenario and time period. For almost all GCMs under both emission scenarios and time 383 

periods, evapotranspiration decreased across all months. Water yield tends to respond to the 384 

variation in precipitation across the GCMs while soil water tends to respond to the seasonal 385 

pattern of evapotranspiration. This is expected as larger decreases in evapotranspiration due to 386 

more efficient transpiration during growing seasons would result in more water remaining in the 387 

soil profile rather than being transpired by plants (Kruijt et al., 2008). Soil water in winter and 388 

mid spring, when plants are not transpiring, is projected to remain relatively constant (all GCMs 389 

show low variation during those months).  390 

[Figure 6 goes here] 391 

[Figure 7 goes here] 392 

Table 6 provides average changes in water balance terms for each individual GCM under 393 

both the mitigation and high emission scenarios for the mid-century and end-century periods. All 394 

models consistently predicted reduced evapotranspiration for both the mid-century and end-395 

century periods for both the mitigation and high emission scenarios. For any given GCM and 396 

time period, the evapotranspiration value decreases more for the high emission scenario 397 

compared to the mitigation scenario. Also, for any given GCM and emission scenario, the 398 
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evapotranspiration decreases more for the end-century period compared with the mid-century 399 

period. 400 

 All GCMs show increased precipitation for both time periods under both emission scenarios 401 

(except for MIROC5 for the end-century period under the high emission scenario, which shows a 402 

decrease of -1.3 mm). For any given time period and model, the high emission scenarios predict 403 

more precipitation compared to the mitigation scenario (with the exception for MIROC5). The 404 

magnitude of precipitation change, as expected, correlated with that of water yield; soil water 405 

change, however shows slightly less correlation with precipitation. Water yield and soil water 406 

both increased from mid-century to end-century (except for MIROC5 where both soil water and 407 

water yield under the mitigation scenario decreased from mid-century to end-century). Water 408 

yield consistently increased from the mitigation to high emission scenario (except for MIROC5 409 

during the mid-century period). Soil water followed a similar pattern (except for CNRM-CM5 410 

and MIROC5 during the mid-century which they decrease from mitigation to high emission 411 

scenario).  412 

Looking into the components of water yield provides more detail about differences across 413 

the GCMs (Figure 8 for mid-century period and Figure 9 for end-century period). For all three 414 

components, the variation between GCMs tends to be greater under the high emission scenario. 415 

The mid-century period showed a similar pattern to the end-century period across GCMs with a 416 

single distinct characteristic that end-century changes in water yield components moved upward. 417 

During the mid-century period under both emission scenarios, all water yield components tend to 418 

increase across the GCMs as expected. Also, during the mid-century period both emission 419 

scenarios show similar variations across the GCMs. The change in variation for all water yield 420 

components throughout the months and models seems to be similar, as expected. Generally, for 421 
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any given time-period and emission scenario the variations in all water yield components are 422 

high during June to October months while overall the lowest variation is experienced in April. 423 

The variation in surface runoff predictions is generally low during the months that the amount of 424 

surface runoff is low (e.g., April and May for mid-century and end-century periods). 425 

[Figure 8 goes here] 426 

[Figure 9 goes here] 427 

Table 7 shows the average changes in the modeled water yield components for each 428 

individual GCM for the mid-century and end-century periods under the mitigation and high 429 

emission scenarios. For any given GCM and time period, all water yield components increase 430 

more for the high emission scenario compared to the mitigation scenario (with the exception of 431 

MIROC5 which shows less increase from the mitigation to high emission scenarios during the 432 

mid-century period). Also, for any given GCM and emission scenario, all water yield 433 

components show increase from mid-century to end-century periods (except for all water yield 434 

components for MIROC5, lateral flow for CNRM-CM5, and surface runoff for MIROC-ESM 435 

under the mitigation scenario). Among the water yield components, the groundwater discharge 436 

experienced the highest changes followed by surface runoff and lateral flow. The MIROC-ESM 437 

based SWAT simulation gives the highest increase in water yield components under the 438 

mitigation scenario for the mid-century (37.7%) period. The NorESM1-M based simulation, on 439 

the other hand, shows the largest increase in that component for the end-century (52.3%) period. 440 

Under the high emission scenario, the NorESM1-M based SWAT simulation gives the highest 441 

increase in water yield components for both the mid-century (48.3%) and end-century period 442 

(87.5%). This was expected as MIROC-ESM and NorESM1-M experienced the highest increase 443 

in projected precipitation during the corresponding future periods (mid-century or end-century) 444 
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and emission scenarios (mitigation or high emission) compared to other GCMs, which leads to 445 

the highest increase in water yield components. In total, the results suggest that average monthly 446 

surface runoff could increase anywhere between 0.7mm (9.8%) and 6.5mm (91.2%), average 447 

monthly lateral flow could increase anywhere between 0.7mm (18.9%) and 2.4mm (64.9%), and 448 

average monthly groundwater discharge would increase anywhere between 1.0mm (11.0%) and 449 

10.3mm (113.8%) depending on the specific GCM used in the analysis as well as the time period 450 

(mid-century or end-century) and emission scenario (mitigation or high). 451 

CONCLUSIONS 452 

A study of the potential climate change impacts to key water balance terms for the Upper 453 

Neuse watershed was conducted using the SWAT hydrologic model. The model was calibrated 454 

on a daily time step for three streamflow stations (Flat, Little, and Eno River watersheds) and 455 

two fitness criteria (NSE and PB) using a multi-objective calibration approach (NSGA-II). 456 

Overall, the calibrated model was satisfactory for both the calibration and validation periods 457 

based on established guidelines (Moriasi et al., 2015). Downscaled precipitation and minimum 458 

daily and maximum daily temperature outputs from five General Circulation Models (GCMs) 459 

along with projected future atmospheric CO2 concentrations were then used as input into the 460 

calibrated SWAT model. We ran simulations for each GCM output for both the mitigation and 461 

high emission scenarios for baseline (1961-2000), mid-century (2046-2065) and end-century 462 

(2081-2099) time periods. 463 

Overall, the ensemble of GCMs projected wetter conditions in the future. This was due to 464 

increases in precipitation for both the mitigation and high emission scenarios for both the mid-465 

century and end-century periods. Additionally, due to increased atmospheric CO2 concentration 466 

evapotranspiration decreased for both scenarios and time periods. The increased precipitation 467 
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and decreased evapotranspiration result in increases to water yield and soil water. Seasonally, the 468 

projected wetter future led to increases in water yield components for all months. The greatest 469 

increase in surface runoff occurred in the summer and fall months, while the greatest increase in 470 

groundwater flow occurred in the spring months. The decrease in evapotranspiration was greatest 471 

during growing seasons and is correlated with increases in soil water. Past research has shown 472 

the importance of how the evapotranspiration process is represented within a watershed model, 473 

but this study highlights the importance of transpiration in the RTP region. Future research 474 

should test the sensitivity of these results to the representation of transpiration within the 475 

watershed model, given that this research has shown the importance of the process to future 476 

water resources in the region. The results of this study have management implications for both 477 

the Upper Neuse and similar watersheds. Despite the history of drought in the region, the 478 

projected increases in precipitation and decreases in transpiration indicate wetter conditions in 479 

the future. These changes could positively impact water supply, but could also increase the risk 480 

of flooding without proper management. As the Research Triangle Park continues to grow, 481 

population and land use changes will have a significant impact on the region’s hydrology. With 482 

the results of this study, and by incorporating changes in population and land use, water 483 

managers will be able to plan for and adapt to future hydrological conditions in the region caused 484 

by a changing and uncertain climate.  485 
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Table 1: The calibration parameter values, acceptable ranges and replacement operations.  

Change type* Parameter Description Range Best Fitted Value 

v Ch_K2 Main channel hydraulic conductivity 0.00-150.00 7.14 
r Cn2 Curve number ±0.25 0.04 
v Alpha_Bf Base flow alpha factor 0.00-1.00 0.90 
r Sol_Awc Available water capacity ±0.25 0.11 
v Ch_N2 Manning's n value for main channel 0.00-0.30 0.031 
v Esco Soil evaporation compensation factor 0.00-1.00 0.78 
r Sol_Z Depth from soil surface to bottom of layer ±0.25 0.20 
v Epco Plant uptake compensation factor 0.00-1.00 0.16 
v RCHRG_DP Deep aquifer percolation fraction 0.00-1.00 0.62 
r SOL_K Saturated hydraulic conductivity ±0.25 -0.05 
a GW_REVAP Groundwater “revap” coefficient ±0.036 -0.01 

a GWQMN Threshold depth of water in the shallow 
aquifer required for return flow to occure ±1000.00 -746.03 

* “v”: The default parameter is replaced by a given value; “r”: The existing parameter value is changed relatively 
“a”: The existing parameter is changed absolutely. 

 

Table 2: The GCMs used and their corresponding average annual changes in precipitation (PCP), 
minimum daily temperature (TMIN) and maximum daily temperature (TMAX) for mid-century  
(2046-2065) and end-century (2081-2099) projections for both mitigation (RCP4.5) and high 
emission (RCP8.5) scenarios from the baseline  (1961-2000) period. 

  TMIN (°C) TMAX (°C) PCP (mm) 

 GCMs Mid End Mid End Mid End 

RC
P 

4.
5 

CNRM-CM51 1.9 2.8 1.8 2.4 7.7 7.1 
MIROC-ESM2 2.4 2.9 2.4 3.4 11.0 10.9 
MIROC53 2.4 2.7 2.9 3.3 4.3 2.8 
MRI-CGCM34 1.2 4.7 0.7 1.1 2.9 9.5 
NorESM1-M5 1.9 3.3 2.5 3.1 10.3 15.6 
Mean 1.9 3.3 2.1 2.7 7.2 9.2 

RC
P 

8.
5 

CNRM-CM5 2.7 4.4 2.6 3.9 8.3 16.6 
MIROC-ESM 3.4 5.7 3.7 6.1 11.3 12.5 
MIROC5 3.0 4.7 3.6 5.3 2.3 -1.3 
MRI-CGCM3 1.9 3.3 1.2 2.4 7.0 16.0 
NorESM1-M 2.6 4.7 3.1 5.3 15.0 20.2 

 Mean 2.7 4.6 2.8 4.6 8.8 12.8 
1 National Center for Meteorological Research, France (Voldoire et al., 2013), 2 Japan Agency for Marine-Earth Sciences and 
Technology, Atmosphere and Ocean Research and National Institute for Environmental Studies, Japan (Watanabe et al., 2010), 
3 Japan Agency for Marine-Earth Sciences and Technology, Atmosphere and Ocean Research and National Institute for 
Environmental Studies, Japan (Watanabe et al., 2010), 4 Meteorological Research Institute, Japan (Yukimoto et al., 2012), 5 



 33 

Norwegian Climate Center, Norway (Bentsen et al., 2013); The spatial resolutions for the GCMs before downscaling are 
1.4°×1.4°, 2.8°×2.8°, 1.4°×1.4°, 1.4°×1.4°, and 2.5°×1.8°, respectively. 

 
Table 3: Calibration and validation statistics for the Flat, Little and Eno watersheds. 

 Calibration Perioda (2005-2008) Validation Period (2009-2011) 
Watershed NSEd NSEm R2

d R2
m PBm,d RSRm NSEd NSEm R2

d R2
m PBm,d RSRm 

Flat 0.68 0.63 0.70 0.63 6.8 0.61 0.63 0.69 0.67 0.73 8.0 0.55 
Little 0.73 0.63 0.76 0.65 13.4 0.60 0.57 0.59 0.59 0.60 8.4 0.63 
Eno 0.55 0.59 0.66 0.62 1.7 0.64 0.67 0.73 0.67 0.74 -9.2 0.52 

a NSE: Nash-Sutcliff Efficiency, R2: coefficient of determination, PB: percent bias (values shown in %), RSR: 
RMSE-observations standard deviation ratio, d: daily, m: monthly  
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Table 4: Average of each water balance term (mm per month) for baseline (1961-2000), mid-
century  (2046-2065) and end-century (2081-2099) projections for both mitigation (RCP4.5) and 
high emission (RCP8.5) scenarios. Values in parentheses represent percent change from baseline 
conditions. 

  Mitigation (RCP4.5) High Emission (RCP8.5) 
 Baseline Mid End Mid End 

Precipitation 93.53 100.78 (7.8) 102.71 (9.8) 102.32 (9.4) 106.33 (13.7) 
Evapotranspiration 58.89 56.36 (-4.3) 55.23 (-6.2) 54.12 (-8.1) 45.63 (-22.5) 
Water Yield 19.89 25.07 (26.1) 26.76 (34.6) 26.96 (35.6) 33.97 (70.9) 
Soil Water 227.62 232.03 (1.9) 233.2 (2.5) 233.51 (2.6) 239.51 (5.2) 

 

Table 5: Average of each water yield component (mm per month) for baseline (1961-2000), mid-
century (2046-2065) and end-century (2081-2099) projections for mitigation (RCP4.5) and high 
emission (RCP8.5) scenarios. Values in parentheses represent percent change from baseline 
conditions. 

   Mitigation (RCP4.5) High Emission (RCP8.5) 
  Baseline Mid End Mid End 

Surface Runoff 7.13 8.97 (25.8) 9.49 (33.1) 9.45 (32.5) 12.21 (71.3) 
Lateral Flow 3.7 4.38 (18.4) 4.59 (24.0) 4.64 (25.3) 5.39 (45.5) 
Groundwtr Dschr 9.05 11.72 (29.5) 12.68 (40.1) 12.87 (42.2) 16.37 (80.9) 
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Table 6: Average changes in water balance terms (mm per month) for mid-century (2046-2065) 
and end-century (2081-2099) relative to the baseline period (1961-2000) for each GCM 

    Precipa ETb WtrYieldc SoilWtrd 

  GCMs Mid End Mid End Mid End Mid End 

RC
P 

4.
5 

CNRM-CM5 7.7 7.1 -3.2 -4.6 5.7 6.2 6.0 8.2 
MIROC-ESM 11.0 10.9 -3.0 -4.3 7.5 8.1 5.6 6.4 
MIROC5 4.3 2.8 -2.6 -3.4 3.8 3.0 4.4 3.9 
MRI-CGCM3 2.9 9.5 -1.8 -2.6 2.9 6.8 -0.1 2.7 
NorESM1-M 10.3 15.6 -2.0 -3.4 6.1 10.4 6.2 6.6 

RC
P 

8.
5 

CNRM-CM5 8.3 16.6 -5.3 -14.6 7.2 16.7 4.4 13.4 
MIROC-ESM 11.3 12.5 -4.8 -13.6 9.0 15.0 8.8 11.9 
MIROC5 2.3 -1.3 -4.7 -13.1 3.6 6.2 2.0 7.1 
MRI-CGCM3 7.0 16.0 -4.2 -11.0 6.0 15.3 4.8 12.4 
NorESM1-M 15.0 20.2 -4.9 -14.0 9.6 17.4 9.4 14.6 

a Precipitation, b Evapotranspiration, c Water yield, d Amount of water in soil profile  
 

Table 7: Average changes in water yield components (mm per month) for mid-century (2046-
2065) and end-century (2081-2099) periods relative to the baseline period (1961-2000) for each 
GCM 

    SrfcRnffa LtrlFlwb GwDschrc 
  GCMs Mid End Mid End Mid End 

RC
P 

4.
5 

CNRM-CM5 1.9 2.0 0.8 0.7 3.1 3.4 
MIROC-ESM 2.8 2.6 0.9 1.1 3.8 4.4 
MIROC5 1.3 0.7 0.5 0.4 2.0 1.9 
MRI-CGCM3 1.6 2.8 0.3 0.8 1.0 3.2 
NorESM1-M 1.6 3.7 0.9 1.3 3.6 5.3 

RC
P 

8.
5 

CNRM-CM5 2.5 5.9 0.9 2.1 3.8 8.7 
MIROC-ESM 3.7 6.5 1.0 1.5 4.2 7.0 
MIROC5 1.2 1.9 0.5 0.7 2.0 3.6 
MRI-CGCM3 2.2 6.5 0.7 1.7 3.1 7.1 
NorESM1-M 2.1 4.6 1.5 2.4 6.0 10.3 

a Surface Runoff, b Lateral Flow, c Groundwater Discharge 
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Figure 1: Study area, the Upper Neuse Watershed in North Carolina, USA. 

Figure 2: (a) NLCD 2011 land use and (b) SSURGO soil hydrologic groups within the Upper 
Neuse watershed study area 

Figure 3: Monthly-accumulated streamflow observations and SWAT simulations at the Flat, 
Little and Eno watershed outlets 

Figure 4: Average monthly water balance terms for baseline (1961-2000), mid-century (2046-
2065) and end-century (2081-2099) periods under the mitigation (RCP45) and high emission 
(RCP85) scenarios 

Figure 5: Average monthly water yield terms for baseline (1961-2000), mid-century (2046-2065) 
and end-century (2081-2099) periods under mitigation (RCP45) and high emission (RCP85) 
scenarios  

Figure 6: Water balance terms variations for mid-century period (2046-2065) with respect to the 
baseline (1961-2000) between GCMs throughout the months under mitigation (RCP45) and high 
emission (RCP85) scenarios 

Figure 7: Water balance term variations for end-century period (2081-2099) with respect to the 
baseline (1961-2000) between GCMs throughout the months under mitigation (RCP45) and high 
emission (RCP85) scenarios 

Figure 8: Water yield component variations for mid-century period (2046-2065) with respect to 
the baseline (1961-2000) between GCMs throughout the months under mitigation (RCP45) and 
high emission (RCP85) scenarios 

Figure 9: Water yield component variations for end-century period (2081-2099) with respect to 
the baseline (1961-2000) between GCMs throughout the months under mitigation (RCP45) and 
high emission (RCP85) scenarios 
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