
Modeling Water Resource Systems using a Service-Oriented

Computing Paradigm

Jonathan L. Goodalla,c, Bella F. Robinsonb, Anthony M. Castronovaa

aDepartment of Civil and Environmental Engineering
University of South Carolina

300 Main Street, Columbia, South Carolina 29208 USA
bICT Centre

Commonwealth Scientific and Industrial Research Organisation
Building 108, North Road, Acton ACT 2601, Australia

cCorresponding Author: goodall@cec.sc.edu, v: 803.777-8184, f:803.777.0670

Abstract

Service-oriented computing is a software engineering paradigm that views complex software

systems as an interconnected collection of distributed computational components. Each

component has a defined web service interface that allows it to be loosely coupled with

client applications. The service-oriented paradigm presents an attractive way of modeling

multidisciplinary water resource systems because it allows a diverse community of scientists

and engineers to work independently on components of a larger modeling system. While a

service-oriented paradigm has been successfully applied for integrating water resource data,

this paper considers service-oriented computing as an approach for integrating water resource

models. We present an interface design for exposing water resource models as web services

and demonstrate how it can be used to simulate a rainfall/runoff event within a watershed

system. We discuss the advantages and disadvantages of using service-oriented computing

for modeling water resource systems, and conclude with future work needed to advance the

application of service-oriented computing for modeling water resource systems.

Keywords: Integrated Modeling, Systems Analysis, Web Services, Water Management

1. Introduction

Modeling regional-scale water resource systems requires new modeling paradigms for cap-

turing the complex biogeochemical and socio-economic interactions operating within natu-

Preprint submitted to Environmental Modelling & Software October 13, 2010

This is an Accepted Manuscript of an article published in Environmental Modelling & Software in
2011, available online: doi:10.1016/j.envsoft.2010.11.013

ral systems (Argent, 2004; del Barrio et al., 2006; Clark and Gelfand, 2006; Engelen et al.,

1995; Jakeman and Letcher, 2003). Many of the questions commonly asked by scientists and

policy-makers require an integration of models across disciplinary boundaries, for example

hydrology, ecology, agriculture, and socio-economic disciplines, and therefore a challenge

facing the modeling community is how to most efficiently make existing disciplinary models

interoperable. In addition to making existing models interoperable, there should also be the

goal of creating a new generation of water resource system models where interoperability

across disciplinary boundaries is considered a priority at the outset. The objective of this

paper is to explore the applicability of a service-oriented computing paradigm as the thought

model for building integrated water resource modeling systems that allow existing and new

models to interoperate.

Despite the fact that commonly used water resource models have had decades of devel-

opment effort, most effort has either been directed toward improving numerical algorithms,

data preparation tools, or user interface capabilities. The core software architectural princi-

ples used within water resource models have largely remained unchanged. This is beginning

to change through efforts to modernize water resource model architectures (Hill et al., 2004;

Leavesley et al., 1996; Moore and Tindall, 2005; Syvitski et al., 2004). These efforts empha-

size similar concepts of modularity and componentization as a key principle to achieve more

open, flexible, and extensible modeling systems. Concurrent to model framework develop-

ment efforts within the water domain, new software engineering approaches are being put

forth by computer scientists (Allan et al., 2006; Foster, 2005; Jennings, 2001), and so there is

a perpetual need for reevaluation and consideration of new software architecture paradigms

to better understand their appropriateness and utility for modeling water resource systems.

Recent attention has focused on service-oriented architectures as a means for building

environmental decision support systems (Mineter et al., 2003; Granell et al., 2010; Goodall

et al., 2008; Horsburgh et al., 2009). In service-oriented computing, a software system is

viewed as independent components or services that are loosely coupled and able to exchange

data with one another over a computer network (Curbera et al., 2002; Huhns and Singh,

2005). Service-orientation is a core concept behind distributed computing where the Internet

2

is used not only for delivering information from machines to humans, but also between ma-

chines themselves (Huhns and Singh, 2005; Foster et al., 2001). Service-oriented science is a

term coined by Foster (2005) that refers to scientific research enabled by distributed networks

of interoperating services. The concept of service-orientation shares much in common with

component-based modeling as described by Argent (2004). Each service acts as a compo-

nent that is an autonomous entity capable of responding to requests instantiated by outside

entities. The primary distinction between service-oriented computing and component-based

modeling is that service-orientation implies distributed components interoperating over a

network (Huhns and Singh, 2005). This distinction caries with it important design and use

case implications that are discussed in this paper.

Service-oriented modeling implies a loose-coupling approach for integrating models. This

differs from many of the past approaches for integrating water resource simulation models

that have followed a tight-coupling integration approach (Figure 1). In a tight-coupling

approach, as demonstrated in such models as Band et al. (1993), Facchi et al. (2004),

Maxwell and Miller (2005), and Qu and Duffy (2007), the originally independent models

are integrated by porting code into a single modeling application. The advantage of a

tight-coupling approach is that it provides complete control over the process representations

and data structures within all parts of the model. The model can therefore make use of the

most efficient algorithms to solve complicated numerical problems, for example fully-coupled

systems of differential equations representing flow between groundwater and surface water

systems (Qu and Duffy, 2007). The disadvantage of tight coupling is that, because internal

conventions such as data structures and semantics within a model are fixed, it becomes

difficult to integrate models that do not conform to a existing conventions. For example, a

tight integration approach may not be the ideal means for integrating physical models and

models that are not easily described by physically-based governing equations to create a

holistic water resources modeling system. In contrast, a loose-coupled architecture requires

only the standardization of interfaces and data exchanges, giving each model component

developer more control over how to structure the internal algorithms required to represent

a particular system.

3

The advantages of adopting a loose-coupling, service-oriented paradigm for modeling

extend beyond allowing for the integration of multidisciplinary water resource models. By

using web services, modeling system components that require complicated software config-

urations, large data demands, or significant computational resources, for example, might be

more easily integrated into a decision support system by keeping each model in its own hard-

ware environment, but then exposing functionality through web service interfaces. In other

cases, it might be practical or necessary to keep models under the control of certain groups.

By exposing such models as web services, groups will be able to maintain control and more

easily update their models, while still having their model provide a service within a larger

modeling system. In addition to these advantages of using a loose-coupling, service-oriented

paradigm for modeling, there are also potential disadvantages to the approach. While the

approach has proven successful for data integration, model integration has a different set

of challenges including the need for models to be calibrated and model users to be clear

on what the model was calibrated to optimize. There are also technical challenges such as

allowing remote users to create sessions through web services in order to have interactive

control over how the model steps through time, set boundary conditions or manipulate state

variables as the model advances through time.

Past work in the application of web services within the water resources community has

focused primarily on exposing historical databases (Goodall et al., 2008), integrating wa-

ter data across heterogeneous data providers (Horsburgh et al., 2009), or data processing

workflows using web services (Granell et al., 2010). The Consortium of Universities for the

Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS)

provides an example of how web services are being used in the United States to address data

integration challenges in the water community. The CUAHSI HIS integrates hydrologic ob-

servational data from heterogeneous federal, state, and local data providers into a “virtual

database” using a service-oriented architecture (Maidment, 2008). Although data is phys-

ically stored with distributed data providers, a standard means for automatic retrieval of

data and metadata from providers using web services gives end users the view that HIS is a

central database of information (Horsburgh et al., 2009). Granell et al. (2010) demonstrate

4

how the role of services can be expanded to not only handle data delivery, but also data

processing and visualization. The authors use hydrologic simulation models as part of their

service-oriented architecture, however as web applications ingesting data from web services

and not as web services themselves.

The goal of this research is to add to the previous work on the application of web services

for data gathering, processing, and visualization to consider how web services can be used for

exposing hydrologic simulation models. In this paper we demonstrate how a water resource

model can be exposed using a service-oriented approach, focusing specifically on the role of

existing standards and their applicability to service-oriented hydrologic modeling. Following

this introduction is a background section that provides further context for our work. We

then present a general methodology for exposing a hydrologic process model as web services.

We describe a simple case study demonstration where we implement the Muskingum Rout-

ing method as a web service, wrap that web service as an OpenMI-compliant component

(Gregersen et al., 2007), and then include the component within a rainfall/runoff model con-

figuration. We provide a discussion of the benefits and limitations of our proposed approach

for modeling water resource systems using web services, and conclude with future work

needed to move the presented case study to a more robust and complete implementation.

2. Research Context

A water resource decision support system using a service-oriented architecture would

consist of databases, analysis routines, and models distributed across the Web and available

for use in workflow orchestrations (Figure 2). Each database, processing routine, and model

would be available to client applications through a web service interface, and scientists would

use software to create workflow orchestrations that define the data flow between services.

All services within the system would be registered in a central repository with metadata

describing its capabilities, inputs, and outputs. This would allow scientists to discover new

modeling services for use in their modeling applications. A key attribute of web services is

that all communication between service providers and service consumers follows predefined

5

data exchange standards. Communication standardization allows services to be loosely

coupled, i.e. plug-and-play, and reusable within multiple software systems.

Web service standards begin with lower-level specifications that target a broad user

group. At this level, a service interface is defined using the Web Service Description Lan-

guage (WSDL) (Curbera et al., 2002). Each service has an associated WSDL document

that acts as a contract between the service provider and service consumer, specifying service

operations, input data, and output data. Data transfers are often encoded using the Simple

Object Access Protocol (SOAP), which allow for the exchange of both simple data types

(e.g. string, integer, double array, etc.) or complex data types (e.g. classes). These core web

service standards provide a level of interoperability between machines, but they are generic

protocols that must often be supplemented with domain-specific standards (Foster, 2005).

Domain specific web service standards applicable to the water resource community are

primarily aimed at exposing data and analysis routines as web services. Examples include

the CUAHSI HIS and its standards for service interface design (WaterOneFlow) and data

transmission (Water Markup Language), the Open Geospatial Consortium (OGC) and its

standards for transmitting geospatial data such as Web Feature Service (WFS) and Web

Coverage Service (WCS), and the OPeN Data Access Protocol (OPeNDAP), widely used

within the scientific community for accessing gridded model output data. While standard-

ization across these services is still ongoing, each service defines a protocol for requesting and

receiving data from remote data providers. In addition to standards for serving data, the

OGC has also established a standard for data processing called the Web Processing Service

(WPS). Because WPS is particular relevant to our work, we will provide a more detailed

discussion of WPS in the following section.

Although web service standards for modeling do not exist in the water resources-related

communities, there has been considerable related work on establishing standards for component-

based modeling of environmental systems (Argent, 2004). Examples include the Earth

System Modeling Framework (ESMF), the Community Surface Dynamics Modeling Sys-

tem (CSDMS), and the Open Modeling Interface (OpenMI). Modeling frameworks often

target different disciplines and therefore have design goals targeted to best address each

6

community’s needs. For example, both ESMF and CSDMS emphasize High Performance

Computing (HPC) for simulating complex climate and surface dynamic systems (Hill et al.,

2004; Peckham, 2008). OpenMI emphasizes interoperability between otherwise independent

models, in part because it was designed to address integrated modeling challenges that ne-

cessitate the coupling of proprietary simulation models (Moore and Tindall, 2005). Few if

any modeling frameworks have been designed using a service-oriented architecture, although

there has been some work to explore extending existing frameworks to accommodate web

services (Čurn, 2007; Turuncoglu et al., 2009).

In addition to specifying standards for exposing models as services and for exchanging

data between modeling services, another critical part of a service-oriented modeling system

envisioned in Figure 2 is software that enables web services integration. This process, called

service orchestration (Peltz, 2003), allows users to define workflows where the output from

one service becomes the input to a second service. Workflows can vary greatly in their level

of sophistication, from simple serial execution of a digraph of linked services, to parallel,

asynchronous execution of a graph with loops, branching, and peer-to-peer data transfers

(Yu and Buyya, 2005). Two example workflow systems are the Kepler scientific workflow

application (Ludscher et al., 2006) and the Open Modeling Interface (OpenMI) Configuration

Editor (Gregersen et al., 2007).

Kepler is built on a lower-level dataflow-oriented system called Ptolemy II that includes

many of the workflow elements defined in the Yu and Buyya (2005) taxonomy. In Kepler,

workflow components are called actors, and each actor has a set of ports that define input

and output data associated with that actor. Scientists using a Graphical User Interface

(GUI) define workflow orchestrations by linking the output from one actor to serve as the

input to a second actor. Kepler allows a web service to be leveraged within Kepler workflows

by the user inputting the web service’s WSDL document to embed that service as a Kepler

actor (Ludscher et al., 2006). Kepler also includes actors for executing and monitoring

Grid computing tasks (GlobusJob, GridFTP, etc.), along with local data processing and

visualization using R, Python, and a suite of prebuilt actor components.

The Open Modeling Interface (OpenMI) Configuration Editor is an application for de-

7

signing and running linked models that adopt the OpenMI protocol for model integration

(Gregersen et al., 2007; Moore and Tindall, 2005). The OpenMI was designed specifically

for integrating water resource models and, for this reason, it includes domain-specific spec-

ifications for digitally describing water resource data passed between coupled models. The

OpenMI Software Development Kit (SDK) provides an implementation of the OpenMI stan-

dard along with supporting tools for creating components and the OpenMI Configuration

Editor is a GUI software tool for creating and running component workflows. OpenMI is a

less general tool than Kepler, in that it is specific for water resource modeling, and therefore

it does not natively include the capability of ingesting web services as components within a

workflow.

We elected to use the OpenMI Configuration Editor as our workflow environment in our

case study demonstration section because it includes conventions specific for water resource

modeling. This required the creation of a web service client component that allows one to in-

gest a web service model within a OpenMI workflow. An important point to stress, however,

is that a model web service could be incorporated within multiple workflow environments in

addition to other analysis and visualization software applications. Therefore, while our case

study demonstration makes use of the OpenMI configuration editor, potential applications

are not limited to this specific framework. Kepler could likewise be used to perform web

service orchestration of water resource models. This level of interoperability is one of the key

features of web services and service-oriented architectures. It is enabled by standardizing

service interfaces and data exchanges, which in turn simplifies the work required to leverage

the service as a resource within a particular application environment.

3. Design of a Modeling Service

Because standards are critical to service-oriented modeling, the first objective of our work

was to design a standard for exposing models as web services. We intentionally took inspira-

tion from existing standards for specifying service interfaces and data exchanges to limit the

proliferation of repetitive standards. Following this section, we present an implementation

of the web service design for a specific hydrologic model.

8

3.1. Modeling Service Interface Design

The interface for a service defines how service consumers request information from that

service. We considered two existing specifications for providing a water resource modeling

web service interface. The first is the Open Geospatial Consortium (OGC) Web Processing

Service (WPS) and the second is the Open Modeling Interface (OpenMI). We considered the

WPS because it offers a standards-based approach for processing data, and we considered

the OpenMI because it offers a interface specification for water resource simulation models.

Neither standard is ideal for service oriented modeling, for the reasons described in the

following paragraphs. However, we have concluded that by combining ideas from these two

standards, it is possible to design a web service interface appropriate for exposing water

resource models. In this section we will first describe both WPS and OpenMI and then

describe how we used the two standards to design a web service standard for water resource

modeling.

The Web Processing Service (WPS) standard has three methods: GetCapabilities, De-

scribeProcess, and Execute (Open Geospatial Consortium, 2007; Michaelis and Ames, 2008).

The GetCapabilities method, included in many OGC web services, allows client applica-

tions to explore and discover service capabilities as a list of processes. The DescribeProcess

method provides metadata specific to an individual process on the service. For example, a

service might have a process named “buffer” and a DescribeProcess response would inform

the client that the buffer process requires an input feature class and a buffering distance and

will result in a buffered feature class. The Execute method is called to perform a specific

process. The response from an Execute method summarizes the inputs and outputs for

the process and information on whether the process ran successfully. The WPS is designed

for data processing where one or more inputs are used to generate one or more outputs.

The WPS is a general service that would need to be extended to handle water-specific data

structures and semantics. Furthermore, maintaining session state, meaning the server stores

information associated with a specific user between service calls, this not often used with

a WPS. It is, however, needed for providing clients with run-time control over a model’s

execution.

9

The OpenMI standard is designed for component-based modeling of water resource sys-

tems. The standard includes an interface specification called ILinkableComponent for defin-

ing models as system components. The OpenMI Software Development Kit (SDK) defines

a second interface called IEngine that inherits from ILinkableComponent and provides a

higher-level means for wrapping numerical simulation models as components. The IEngine

interface provides a syntactically and semantically rich interface for describing water resource

models. For example, the IEngine interface and the OpenMI standard in general include

class specifications for ElementSets to where model elements exist, Quantities to describe

what is being passed into or out of the model, and TimeHorizon to describe when the model

is able to produce outputs. That said, OpenMI was designed for integrating models that

are implemented as local resources. This design feature is evident by the fact that IEngine

interface includes over twenty methods and attributes for encapsulating a model as a com-

ponent. In a service-oriented architecture, it is likely that models may be distributed across

the Internet and so there is a need to minimize network call and data transfers between the

model components and the modeling framework.

Because the WPS lacks domain specificity and the OpenMI assumes that all models

are local resources, neither approach is ideal for service-oriented water resource modeling.

We propose that the two protocols, when combined, would leverage the strength of each to

create an appropriate protocol for service-oriented water resource modeling. We designed

a web service interface that begins with the OpenMI and modified the interface in order

to achieve a level of complexity closer to the WPS. The OpenMI methods can be broadly

grouped into two categories. The first category are methods meant for getting and setting

properties of the model that will remain static during the time which the model is initiated

until it is deleted from the server’s memory. The second category includes methods which

get or set values that will be dynamic during the model’s lifetime. Examples of static

methods that fit into the first category include the OpenMI IEngine GetModelDescription

and GetTimeHorizon methods. These methods will likely not be updated and will return

the same information each time they are called by a client. The prime example of a dynamic

method that fits into the second category is GetValues. As the model progresses through

10

time, each GetValues call will likely return a unique data object.

Our web service specification is summarized in Figure 3a. The model metadata, which

is retrieved through the IEngine interface by using method calls for each property, would

instead be retrieved from the service using a DescribeModel method call that lumps meta-

data into an XML string. This change would bring the IEngine interface closer to the Web

Processing Service interface that uses a DescribeProcess method to inform the client appli-

cation about the service capabilities, inputs, and outputs. The other service methods should

include an Initialize method for preparing the model for use, a PerformTimeStep method

for advancing the model in time, and a Finalize method for removing the model from mem-

ory. Finally, it is important to state that this design would not strictly follow the OpenMI

standard, but it is intentionally designed to provide sufficient metadata and capabilities in

order for it to be wrapped as an OpenMI-compliant component. The service design would,

therefore, be a lower level interface that allows but does not require OpenMI-compliance.

3.2. Data Transfer Schema

In addition to specifying a standard interface for services, it is also necessary to define

the data exchanges between services. Precise definition of these data exchanges, both syn-

tactically and semantically, is required to allow client applications to properly understand

and operate on data exchange objects. This is perhaps the largest challenge in achieving

interoperability within a service-oriented architecture for water resource modeling. Because

covering both the syntactic and semantic interoperability challenges is beyond the scope

of a single paper, we focus our discussion primarily on the syntactic interoperability chal-

lenges. The organization of water data into a core set of data exchange objects must include

sufficient detail for proper interpretation of information, but must not be verbose to avoid

large data transfer sizes. One of the core design decisions is how to group space, time,

and variables into data exchange objects. Two potential organizations are time series (one

variable, one location, and multiple times) used by the CUAHSI HIS in its Water Markup

Language (WaterML) schema or time slices (one variable, one time, and multiple locations)

used by the OpenMI in its ExchangeItem class. While it would be possible to support both

11

time series and time slice data structures, keeping the variety of data exchange objects to a

minimum reduces the complexity of the server and client code required for interpreting the

data exchange objects.

Our design begins from the OpenMI data transfer objects for data exchange between

models within a service-oriented architecture because the data exchanges are designed to be

the minimal information required for properly interpreting values passed between models

during simulation run-time. The organization of OpenMI data transfer objects is presented

in Figure 3b. The basic object passed between client and server is an ExchangeItem object

(Gregersen et al., 2007). The ExchangeItem object includes two child objects as properties:

an ElementSet and a Quantity. Geographic features are encapsulated within an ElementSet

object that include one or more point, line, polygon, or volume elements. Variables are

defined by a Quantity object that includes a variable name, measurement units, measurement

unit dimensions, and conversion factors to standard units. An exchange item is therefore a

time slice organization of information meaning it is valid for one moment in time, for one

variable type, but for many spatial elements.

While the OpenMI ExchangeItem object is an appropriate starting point for designing

data exchange standards in a water resource modeling web service, there are still some

limitations of this exchange standard. OpenMI does not restrict the vocabularies of vari-

able names, unit names, or geographic referencing systems (Gregersen et al., 2007). These

attributes of an exchange item are simply string data types in which the user input is un-

restricted. The assumption is that a human will properly interpret variable and unit names

when matching output and inputs between components. Unit dimensions, however, are

limited to a defined list of terms, and thus are checked for consistency when interlinking

two components during a configuration stage (Gregersen et al., 2007). To realize the full

potential of service-oriented modeling, additional work is needed to extend the OpenMI Ex-

changeItem objects using semantics and controlled vocabularies, such as what is available

in the NetCDF Climate and Forecast (CF) Metadata Conventions (Eaton et al., 2009) or

in the CUAHSI HIS ontology used to support search over disparate databases (Beran and

Piasecki, 2009).

12

3.3. Service Orchestration

The final step in service-oriented modeling is defining workflow orchestrations that in-

terlink services to perform analysis or modeling tasks. In this subsection we discuss three

types of workflows that are important for modeling and analysis of water resource systems:

(1) time independent, (2) component-level time looping, and (3) workflow-level time looping

(Figure 4). This section is intended to provide a high level discussion of how each type

of workflow would be implemented within a service-oriented computing paradigm, and the

next section provides an example implementation. The three approaches are listed in order

of increasing difficulty in terms of the sophistication of the software required to address each

approach.

In the first case the workflow might perform data processing or analysis tasks with no

need to track model run time as part of the workflow execution (Figure 4a). Such a workflow

may be used to execute a series of data processing tasks needed to transform model input or

output data. An example of a time-independent workflow is a series of linked geoprocessing

operations required to create a watershed model input file (Figure 4a). Time-independent

workflows use a directed graph workflow structure where each processing step is performed

sequentially (Yu and Buyya, 2005). It is possible to implement such workflows as multi-

threaded tasks where independent branches of the graph are computed in parallel. The

data movement between components within a time-independent workflow is mediated by a

central job scheduler and intermediate files are often written to standard file formats (Yu

and Buyya, 2005). The ArcGIS Model Builder environment is an example of a workflow

environment that processes what we refer to as time-independent workflows.

The second case of workflows takes the form of running multiple models in series or, where

possible, in parallel with model time being handled at the individual component level (Figure

4b). Having time handled at the component level means that each model component begins

at time zero and runs through all time-steps before communicating data to downstream

components. Ideally components within such a workflow run on the same time horizon and

time step, although there is the possibility of including translation code between component

interfaces. Because each component runs without run-time input from other components,

13

it is not possible to allow feedbacks between model components. An example of a water

resources model that would be implemented using this approach is a lumped rainfall/runoff

model where hydrographs are generated for subwatersheds and then routed downstream

through the river network (Figure 4b). Like the time independent workflow, it is possible to

achieve performance gains by executing components on independent branches of the workflow

in parallel. Our case study provides an example of implementing a component-level time

looping workflow where one of the workflow components is implemented as a web service.

The third case of workflows is a dynamic model where model components communi-

cate during the workflow execution and time looping is controlled at the workflow rather

than the component level (Figure 4c). Because time-looping occurs at the workflow level,

components will communicate data as the simulation advances in time. An example of a

workflow that could be implemented using this approach would be a simulation of a hy-

drologic system that includes predictions of river stage, infiltration rate, groundwater level,

and precipitations rates by a set of coupled models (Figure 4c). Data movement in such

a workflow would ideally follow a peer-to-peer pattern to minimize bottlenecks associated

with centralized and mediated data movements (Yu and Buyya, 2005). There is a great deal

of flexibility in such a workflow structure compared to the others because model time is han-

dled externally from individual services so that services communicate during a simulation.

This allows for a more dynamic interaction between services including feedback loops and

component-to-component interactions necessary for modeling dynamic system interactions.

The OpenMI Configuration Editor accomplishes such workflows with its peer-to-peer data

flow implementation where components request information from linked components as the

workflow progresses in simulation time (Gregersen et al., 2007).

4. Prototype Implementation

In this section we present a prototype implementation of the web service for the case

of workflow-level time looping service interactions. In related work we have implemented

a rainfall/runoff model using a typical hydrologic engineering approach for a small wa-

tershed in Columbia, SC USA as OpenMI components (Castronova and Goodall, 2008).

14

Excess rainfall was computed by a component that implements the Curve Number method,

incremental runoff by a component that implements the Unit Hydrograph method, and

streamflow throughout the river network by a component that implements the Muskingum

Routing method (Chow et al., 1988) (Figure 5). The components were implemented as

OpenMI components using the Simple Model Wrapper (SMW) approach designed to ease

the process of creating new, process-level OpenMI components (Castronova and Goodall,

2010). The calculations were verified by comparison with an industry-standard hydrologic

engineering model, the Hydrologic Engineering Center (HEC) Hydrologic Modeling System

(HMS).

In the related work, each of the three components were all implemented as local resources

and not as web services. To test the concepts presented in this paper, we re-implemented

the Muskingum component as a web service using the proposed interface standard presented

in Section 3.1. We then wrote an OpenMI component to act as a client for the web service

and handle data transfers to and from the Muskingum web service. The end result of this

re-implemented model was that it performed the same simulation as in our previous model

where all components were local resources, despite the fact that one component of the overall

model, the Muskingum Routing method, was performed by a web service. The difference

is largely hidden from the end user when viewed through the OpenMI Configuration Editor

GUI (Figure 5), which was done by design to ease the process of switching model components

between local and remote services depending on the needs of the modeler.

The interaction between the OpenMI client component and web service is described in

Figure 6. The Initialization method reads in a data structure representing the river network

passed from the client OpenMI component to the web service and encoded as an XML string.

The PerformTimeStep method takes as input the runoff values for the river network nodes

and performs the routing calculation on those runoff values to estimate streamflow along all

edges in the river network. The method then returns these streamflow values to the client.

The web service maintains state (meaning the attributes of the river network) until the user

makes a Finalize call on the web service. The finalize method clears the river network object

from the server’s memory and frees the service for use by another client application.

15

The Muskingum service was implemented using the Python programming language to

demonstrate the potential of web services for providing programming language and cross-

platform interoperability. It leveraged open source libraries for numerical (Oliphant, 2006)

and graph algorithms (Hagberg et al., 2008). The prototype used a low-level web service

communication protocol, XML-RPC, although SOAP/WSDL and REST standards would

also be possible for a production implementation. We choose to use this lower level protocol

for ease of implementation in the prototype and for generality because there are competing

web service protocols one may wish to implement.

Although this model could follow what we earlier described as a component-level time

looping structure, the web service was actually programmed to allow for the more com-

plicated class of workflows where time looping is handled at the workflow level. This was

done because the OpenMI 1.4 standard requires time looping to be handled external to each

model component. Model components are written to respond to GetValues request where

it is most often the case that a GetValues request is for a specific instant in time. Thus,

the PerformTimeStep method of the Muskingum web service is called for each time step in

the model and not just once at the beginning of the model execution, therefore making the

example more similar to the workflow-level time looping structure discussed in the previous

section.

Lastly it should be noted that for this prototype implementation, the service was imple-

mented as a single threaded application, meaning that it can serve only one client application

at a time. Thus an Initialize call locks the service for use by other client applications until

a Finalize method is called. In a production environment, a multithreaded service could be

implemented using tokens or some other means for uniquely identifying client applications

and creating session states to support multiple simultaneous users.

5. Discussion

The motivation for this work was to design a web service standard appropriate for water

resource modeling. Such a standard does not currently exist, yet is needed to achieve an

end-to-end cyberinfrastructure for modeling water resource systems. We explored existing

16

interface and data exchange standards and leveraged these existing standards in our proposed

web service interface design. While a complete solution to the challenges of water resource

modeling within a service-oriented architecture is beyond the scope of a single paper, our

intention is to begin a dialog on service-oriented water resource modeling in order to address

key research challenges for applying the technology to the water resources domain. A large

part of this effort is identifying both benefits and challenges of service-orientation. We have

alluded to such benefits and challenges throughout this paper, but present a more complete

discussion in this section.

A key advantage of service-oriented computing is avoiding code duplication (Papazoglou

and Georgakopoulos, 2003). This is accomplished by creating targeted services with specific

objectives and boundaries that are reusable across applications. Because applications often

rely on the same set of underlying services, and because services are loosely-coupled with

applications in a service-oriented architecture, it is possible for application developers to

reuse the same underlying services within multiple applications (Huhns and Singh, 2005).

Another important benefit of service-oriented computing is that the technology is built to

provide an open architecture where new services can be easily created and then consumed

within client applications. Services created by one user group become available for use by

any other group connected through the Internet, although it is of course possible to restrict

use to only authorized clients. A related benefit is that, because all communication between

services and clients is through a defined interface, there is platform independence between

clients and servers. This means a service could be implemented using Fortran on a Linux

operating system, yet that service could still be consumed by a Windows client programmed

using Visual Basic .Net.

If services adopt industry-standard specifications like WSDL for defining a service inter-

face, then it becomes possible to use software tools to automatically generate an Application

Programming Interface (API) for communicating with the service. Many software languages,

including mathematical and statistical languages, include tools for automatically generat-

ing an API from a WSDL document. Because of these tools, the model developer using

the web service API is hidden from details of the messages passed between the modeling

17

system and the service. The service execution remains external to the modeling system,

therefore making for a loosely-coupled integration of the modeling system and service. This

means that instead of system components acting as standalone applications communicating

with one another through standardized file formats, as is the typical approach for loosely

integrating water resource models, services instead become dependent libraries embedded

within a modeling system application.

Service-oriented modeling allows for a hierarchical representation of complex water re-

source systems. A service can be a conglomeration of other services, allowing for different

levels of system abstraction. In some cases modeling water resource systems requires a

coarse view of the natural world (e.g. decomposing a system into atmosphere, land surface,

subsurface, and other model services), while other cases may require a more detailed view

into individual process-level components (e.g. infiltration, evaporation, overland flow, and

other process-level services). Coarse decompositions minimize the complexity in setting up

a system representation as a workflow by specifying how data is exchanged between system

components. Because tight-coupling approaches are generally more computationally efficient

than loose-coupling approaches, coarse decompositions also improve computational perfor-

mance (Pingali and Stodghill, 2006). Refined decompositions allow for increased flexibility

because smaller units within the modeling system can be more easily added or removed.

Ideally systems would be represented with a hierarchical structure where coarse services are

themselves workflows consisting of more refined services. This would allow the modeler to

select the most appropriate level of system abstraction for a particular application.

Service-oriented computing also enables the use of high performance computing (HPC)

through computational architectures like the Grid (Foster et al., 2001). The Grid provides

important extensions for service-oriented modeling including state and fault handling, au-

thentication, and resource management. Even without Grid computing, services can aid

in improving model performance and efficiency. For example, web services could be used

to expose a model with large data input requirements but relatively small output datasets.

A spatially distributed watershed model, for example, might be exposed as a web service

keeping the terrain, soil, and other parameterizations of the model on the server side and

18

only transmitting soil moisture outputs to client applications. In such a case, the model

would be stored geographically near the large input datasets, saving the end user that is

only interested in soil moisture conditions from having to download and process these input

data required for running the model locally.

The primary disadvantages of a web services approach for environmental modeling are

related to the loosely-coupled, web-based architecture of services that can result in perfor-

mance, reliability, and security issues. Performance challenges in using web services for water

resource modeling primarily relate to tightly-coupled process interactions that may require

large data transfers, particularly when initializing and parameterizing the modeling domain,

or from computation tasks with long compute times. In addition to performance issues,

reliability of services can also be a disadvantage of service-oriented modeling approaches.

There is the possibility of remote servers becoming temporarily unavailable, thus breaking

all client applications dependent on that service. Finally security must be considered to

prohibit unauthorized users and track overuse and abuse of services. Many of these issues

are addressed by existing technologies such as Grid infrastructures (Foster et al., 2001) that

can be used to enhance the applicability of service-oriented architectures for modeling.

In many but certainly not all modeling scenarios, these disadvantages of service-oriented

approaches can be minimized through thoughtful system design (Pingali and Stodghill,

2006). When designing services, it is important to consider the response time and size

of messages passed over the Internet. Model processes that require numerous communica-

tions with data transfers during runtime should be tightly-coupled within a single service to

avoid network latency. Intelligent caching of data can also be used to minimize data transfers

of repetitive information. For example, if a large dataset is required to initialize a modeling

domain within a service, the data can be maintained within the service’s state so that it does

not need to be passed to the service with each service method call. Services can be imple-

mented with complex back-end hardware architectures ranging from single machine servers

to clusters. Thus the compute time and uptime reliability for services can be addressed

with the proper infrastructure investment. While this may not be possible for prototyping

environments, it can and should be implemented within production environments.

19

Perhaps the most important and challenging design decision for building a service-

oriented water resource modeling system is deciding how to decompose a system into a set

of representative services. This is the “granularity problem” associated with deciding the

scope for each service within workflow configurations. As services become smaller in scope,

for example modeling an individual process such as infiltration or evapotranspiration, the

flexibility with which one can reuse and reconfigure services within workflow configurations

increases. However, fine granularity also increases the frequency of communication required

between services and clients. These communications could become a bottleneck within the

application and make its use for real-time operations infeasible. However, as services increase

in scope, the scientist or engineer using the services within workflow configurations will have

less control over the individual processes used within the workflow. Additional research

is needed to quantify performance costs associated with modeling fully-coupled processes

with large data transfers within a loosely coupled service-oriented architecture. If the cost

is prohibitive, then ideally services would be created across granular sizes (from individual

process to logical groupings of processes) and the modeler would be able to decide the exact

service needed for a specific application.

6. Summary

The basic design for a modeling service presented in this paper highlights the existing

and new standards needed for implementing the service. The model exchange language and

web service interface definition presented here combine elements from existing standards

into a new protocol appropriate for exposing water resource models as services. No current

modeling web service standard exists, and this work is meant to facilitate a discussion of

the important aspects for such a web service modeling standard. As stated before, modeling

of complex water resource systems depends on integration of multidisciplinary models, and

integration depends on standards. Our hope is that the work presented here informs stan-

dards organizations like the Open Geospatial Consortium (OGC) and the Open Modeling

Interface (OpenMI) Association on a potential design of a web service standard for water

resource system modeling.

20

The simple implementation of the service standard for a process-level hydrologic model

demonstrates the advantages of the approach for building water resource modeling systems.

Services provide an open platform for exposing models because they allow models to be

authored in most modern programming languages and need not be used by the same pro-

gramming language and operating system in which the service was authored. They are flex-

ible because they are loosely-coupled, allowing modelers to design workflow orchestrations

that reconfigure services to achieve different end goals. Finally services are also extensible

because anyone can author new services, host them on their own server environments, and

allow anyone they wish to use the service for their own purposes. To fully capitalize on

these core properties of service-orientation, however, basic standards must be agreed upon

for exposing models as web services (Foster, 2005).

Thoughtful design is required to minimize potential performance, reliability, and secu-

rity issues associated with service-oriented computing (Pingali and Stodghill, 2006). Because

services follow a loosely-coupled integration approach, it is unlikely that a service-oriented

paradigm will deliver maximum performance in terms of computational time for complex

models. However, well thought out model and service designs could lessen these disadvan-

tages and make service-oriented computing attractive for a wide variety of applications. An

obvious application is for models that require a large amount of data for parameterization

but produce a relatively small amount of data as output. By co-locating such a model along

with its input database and then exposing the model as a web service, multiple end users

can leverage the same model within workflow orchestrations without having to each param-

eterize and manage the model input data. They would be able to set certain boundary

conditions for the model, run the model, and receive model outputs by using a web service.

Finally, we have provided here only a simple implementation of this approach in our pro-

totype section to serve as a proof of concept for service-oriented hydrologic modeling. More

work is needed to fully test the impact of model performance as the data transfers between

services increase in both size and frequency. Furthermore, we have only briefly described the

semantic issues associated with service-oriented modeling in this paper. To reach the true

potential of service-oriented computing, services are required across disciplinary boundaries,

21

and so ontologies are needed to map between domain specific semantics. This work is being

addressed for data integration efforts in the earth sciences, and such efforts will largely be

applicable to model integration as well.

Acknowledgments

This work was funded in part by the National Science Foundation under project number

EAR-0622374 and by a CSIRO Chief Executive’s Study Award.

References

Allan, B. A., Armstrong, R., Bernholdt, D. E., Bertrand, F., Chiu, K., Dahlgren, T. L., Damevski, K.,

Elwasif, W. R., Epperly, T. G. W., Govindaraju, M., Katz, D. S., Kohl, J. A., Krishnan, M., Kumfert,

G., Larson, J. W., Lefantzi, S., Lewis, M. J., Malony, A. D., McInnes, L. C., Nieplocha, J., Norris, B.,

Parker, S. G., Ray, J., Shende, S., Windus, T. L., Zhou, S. J., 2006. A component architecture for high-

performance scientific computing. International Journal of High Performance Computing Applications

20 (2), 163–202.

Argent, R., 2004. An overview of model integration for environmental applicationscomponents, frameworks

and semantics. Environmental Modelling & Software 19 (3), 219–234.

Band, L., Patterson, P., Nemani, R., Running, S., 1993. Forest ecosystem processes at the watershed scale:

incorporating hillslope hydrology. Agricultural and Forest Meteorology 63 (1-2), 93–126.

Beran, B., Piasecki, M., 2009. Engineering new paths to water data. Computers & Geosciences 35 (4, Sp.

Iss. SI), 753–760.

Castronova, A. M., Goodall, J. L., 2008. Design and implementation of a simple model interface for

component-based modeling. In: Eos Trans. AGU. Vol. Abstract H21G-0961.

Castronova, A. M., Goodall, J. L., 2010. A generic approach for developing process-level hydrologic modeling

components. Environ. Model. Softw. 25 (7), 819–825.

Chow, V. T., Maidment, D. R., Mays, L. W., 1988. Applied Hydrology. McGraw-Hill, New York.

Clark, J., Gelfand, A., 2006. A future for models and data in environmental science. Trends in Ecology &

Evolution 21 (7), 375–380.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S., Apr. 2002. Unraveling the

Web services web: An introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing 6 (2), 86–93.

del Barrio, G., Harrison, P., Berry, P., Butt, N., Sanjuan, M., Pearson, R., Dawson, T., 2006. Integrating

multiple modelling approaches to predict the potential impacts of climate change on species distributions

22

in contrasting regions: comparison and implications for policy. Environmental Science & Policy 9 (2),

129–147.

Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Caron, J., Signell, R., Bentley, P., Rappa, G.,

2009. NetCDF Climate and Forecast (CF) Metadata Conventions. Version 1.4, 27 February, 2009.

URL http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.4

Engelen, G., White, R., Uljee, I., Drazan, P., 1995. Using cellular automata for integrated modelling of

socio-environmental systems. Environmental Monitoring and Assessment 34 (2), 203–214.

Facchi, A., Ortuani, B., Maggi, D., Gandolfi, C., 2004. Coupled SVATgroundwater model for water resources

simulation in irrigated alluvial plains. Environmental Modelling & Software 19 (11), 1053–1063.

Foster, I., 2005. Service-oriented science. Science 308 (5723), 814–817.

Foster, I., Kesselman, C., Tuecke, S., 2001. The anatomy of the grid: Enabling scalable virtual organizations.

International Journal of High Performance Computing Applications 15 (3), 200–222.

Goodall, J., Horsburgh, J., Whiteaker, T., Maidment, D., Zaslavsky, I., 2008. A first approach to web services

for the National Water Information System. Environmental Modelling & Software 23 (4), 404–411.

Granell, C., Daz, L., Gould, M., 2010. Service-oriented applications for environmental models: Reusable

geospatial services. Environmental Modelling & Software 25 (2), 182–198.

Gregersen, J. B., Gijsbers, P. J. A., Westen, S. J. P., 2007. OpenMI: Open Modelling Interface. Journal of

Hydroinformatics 9 (3), 175.

Hagberg, A. A., Schult, D. A., Swart, P. J., Aug. 2008. Exploring network structure, dynamics, and function

using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008). Gel Varoquaux,

Travis Vaught, and Jarrod Millman (Eds), Pasadena, CA USA, pp. 11–15.

Hill, C., DeLuca, C., Balaji, Suarez, M., Silva, A. D., 2004. The architecture of the earth system modeling

framework. Computing in Science & Engineering 6 (1), 18–28.

Horsburgh, J. S., Tarboton, D. G., Piasecki, M., Maidment, D. R., Zaslavsky, I., Valentine, D., Whitenack,

T., 2009. An integrated system for publishing environmental observations data. Environmental Modelling

& Software 24 (8), 879–888.

Huhns, M., Singh, M., 2005. Service-oriented computing: Key concepts and principles. IEEE Internet Com-

puting 9 (1), 75–81.

Jakeman, A., Letcher, R., 2003. Integrated assessment and modelling: features, principles and examples for

catchment management. Environmental Modelling & Software 18 (6), 491–501.

Jennings, N. R., 2001. An agent-based approach for building complex software systems. Communications of

the ACM 44 (4), 35–41.

Leavesley, G. H., Markstrom, S. L., Brewer, M. S., Viger, R. J., 1996. The Modular Modeling System

(MMS): The physical process modeling component of a database-centered decision support system for

23

water and power management. Water, Air, & Soil Pollution 90 (1-2), 303–311.

Ludscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E. A., Tao, J., Zhao, Y.,

2006. Scientific workflow management and the kepler system. Concurrency and Computation: Practice

and Experience 18 (10), 1039–1065.

Maidment, D. R., 2008. Bringing water data together. Journal of Water Resources Planning and Management

134 (2), 95.

Maxwell, R. M., Miller, N. L., 2005. Development of a coupled land surface and groundwater model. Journal

of Hydrometeorology 6 (3), 233.

Michaelis, C. D., Ames, D. P., 2008. Evaluation and implementation of the OGC Web Processing Service

for use in Client-Side GIS. GeoInformatica 13 (1), 109–120.

Mineter, M., Jarvis, C., Dowers, S., 2003. From stand-alone programs towards grid-aware services and com-

ponents: A case study in agricultural modelling with interpolated climate data. Environmental Modelling

& Software 18 (4), 379–391.

Moore, R. V., Tindall, C., 2005. An overview of the open modelling interface and environment (the OpenMI).

Environmental Science & Policy 8 (3), 279–286.

Oliphant, T. E., 2006. Guide to NumPy. Trelgol Publishing, USA.

URL http://numpy.scipy.org

Open Geospatial Consortium, 2007. OpenGIS R©Web Processing Service. OGC 05-007r7, Version 1.0.0.

Papazoglou, M. P., Georgakopoulos, D., 2003. Service-oriented computing: Introduction. Communications

of the ACM 46 (10), 24.

Peckham, S., 2008. CSDMS handbook of concepts and protocols: A guide for code contributors. http:

//csdms.colorado.edu/wiki/Tools/_CSDMS/_Handbook.

Peltz, C., 2003. Web services orchestration and choreography. Computer 36 (10), 46–52.

Pingali, K., Stodghill, P., 2006. A distributed system based on web services for computational science

simulations. In: Proceedings of the 20th Annual International Conference on Supercomputing - ICS ’06.

Cairns, Queensland, Australia, p. 297.

Qu, Y., Duffy, C. J., 2007. A semidiscrete finite volume formulation for multiprocess watershed simulation.

Water Resources Research 43 (8).

Syvitski, J., Paola, R., Slingerland, R., Furbish, D., Wiberg, P., Tucker, G., Apr. 2004. Building a community

surface dynamics modeling system: Rational and strategy. A Report to the National Science Foundation,

INSTAAR, University Colorado, Boulder.

Turuncoglu, U., Murphy, S., DeLuca, C., 2009. Towards CCSM Self-Describing workflows. poster presented

at the 2009 CCSM Workshop.

Čurn, J., 2007. Distribution for Open Modelling Interface and Environment. Master’s thesis, Charles Uni-

24

versity, Prague.

Yu, J., Buyya, R., 2005. A taxonomy of scientific workflow systems for grid computing. ACM SIGMOD

Record 34 (3), 44.

25

climate
models

water
demand
models

hydrology
models

reservoir
operations

models

ecological
models

agricultural
models

Figure 1: Contrasting a (a) tight-coupling and (b) loose-coupling approach for model integration. In a tight

coupling approach, models must adopt common internal data structures. In a loose coupling approach,

model interfaces are standardized but internal implementation is not.

26

www

WSDL
document

Database
Server

Model
Server

Model

Get Data Prepare
Inputs

Run
Model

Analysis
Server

Analysis
Routines

Service Orchestration

Client

Figure 2: A vision for service-oriented modeling where data, models, and analysis routines are exposed as web

services and integrated into workflow orchestrations designed to address specific scientific or management

questions

27

IModelService

DescribeModel() : string
Initialize(string Elements) : string
PerformTimeStep(string Inputs) : string
Finalize() : string

ExchangeItem

Quantity

ElementSet

ID() : string
Description() : string
SpatialReference() : ISpatialReference
ElementType() : ElementType
ElementCount() : int
Version() : int

ID() : string
Description() : string
ValueType() : ValueType
Dimension() : IDimension
Unit() : IUnit

Quantity() : IQuantity
ElementSet() : IElementSet

(a) proposed interface design

(b) proposed data exchange objects

Figure 3: Proposed modeling service design including (a) interface and (b) data exchange specifications

28

compute flow
direction grid

determine
subwatershed

polygons

compute
infiltration perform

overland flow
routing

model
groundwater flow

account for
water

withdrawals
and returns

perform river
routing

compute
precipitation

compute
evaporation

compute
runoff

hydrographs

route runoff
hydrographs

through stream
network

compute flow
accumulation

grid

(a) time independent

(c) time looping at the workflow level

fill DEM

generate design
storm

hyetograph

(b) time looping at the component -level

Figure 4: Three classes of workflow orchestrations relevant for modeling water resource systems

29

Database
Reader

Local Models

Client for WS Model

Link Properties

Spatial mapping of
data transfers from

watersheds to
stream reaches

Element
Viewer

Linking input and output data
exchange items

Figure 5: Prototype Implementation of a service workflow for modeling a rainfall/runoff event using the

Open Modeling Interface (OpenMI) Configuration Editor

30

Model is setup on server
based on a configuration that

defines model element
attributes. The returned token

is used to create a session.

Model is advanced through
time by passing in input

exchange items and returning
output exchange items

Model is cleared from
memory and any errors are

reported to the user

Figure 6: Communication between OpenMI client component and Muskingum web service

31

