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Highlights 16 

• A deep learning workflow is described, able to segment wetlands from geospatial data 17 

• Wetlands are segmented at a high spatial resolution for environmental planning 18 

• The workflow resulted in accurate wetland predictions (91% recall and 57% precision) 19 

• Training using physically-informed indicators outperformed using elevation directly 20 

 21 

Software and Data Availability 22 

Software created through this research along with documentation is available under an MIT 23 

license from https://github.com/uva-hydroinformatics/wetland_id. All input data required to run 24 

the model are publicly available through federal and state data providers. Wetland delineation 25 
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datasets used for training and evaluation was made available to the researchers through a 26 

relationship with the Virginia Department of Transportation. To retrain the model for a new 27 

landscape, similar wetland delineation data for that area may be required.  28 

 29 

Abstract 30 

Automated and accurate wetland identification algorithms are increasingly important for 31 

wetland conservation and environmental planning. Deep learning for wetland identification is an 32 

emerging field that shows promise for advancing these efforts. Deep learning is unique to 33 

traditional machine learning techniques for its ability to consider the spatial context of object 34 

characteristics within a landscape training the algorithms, which limits their application for many 35 

environmental applications including wetland identification. Using four study sites across Virginia 36 

with field delineated wetlands, we provide insight into the potential for deep learning for wetland 37 

detection from limited, but typical, wetland delineation training data. Our proposed workflow 38 

performs a wetland semantic segmentation using DeepNets, a deep learning architecture for remote 39 

sensing data, and an input dataset consisting of high-resolution topographic indices and the 40 

Normalized Difference Vegetation Index. Results show that models trained and evaluated for a 41 

single site were able to achieve high accuracy (up to 91% recall and 56% precision) and similar 42 

accuracy can be obtained for models trained across multiple sites (up to 91% recall and 57% 43 

precision). Through this analysis we found that, across all sites, input data configurations taking 44 

advantage of hydrologic properties derived from elevation data consistently outperformed models 45 

using the elevation data directly, showing the benefit of physically-informed inputs in deep 46 

learning training for wetland identification. By refining the wetland identification workflow 47 
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presented in this paper and collecting additional training data across landscapes, there is potential 48 

for deep learning algorithms to support a range wetland conservation efforts. 49 

 50 

Introduction 51 

Wetlands are important ecosystems that are threatened by development, climate change, 52 

and pollution (Klemas, 2011). Wetland loss is both a global (Davidson, 2014) and national 53 

problem, as half of the wetlands of the conterminous U.S. have been lost since 1600 (Dahl et al., 54 

1991). In the U.S., federal regulations, such as Section 404 of the Clean Water Act, play an 55 

important role in wetland protection. Laws require environmental impact assessments prior to land 56 

development and water resources projects, which entails the creation of detailed wetland surveys 57 

(Page & Wilcher, 1990). Conducting these surveys with the level of spatial resolution and accuracy 58 

needed to abide by federal regulations and meet the goal of avoiding adverse impact to wetlands 59 

can be time-consuming and costly. To support these efforts, methods for more rapidly identifying 60 

wetland locations are needed. Although manual surveys will continue to be the most accurate 61 

method to map wetlands, there is potential for supporting these efforts by using machine learning 62 

approaches, including deep learning, to identify wetland features at varying scales (Guo et al., 63 

2017; Lang et al., 2013; Lang & McCarty, 2014).   64 

Despite the many types of protected wetlands that exist, all wetlands can be identified by 65 

common features. These include the presence of hydrologic conditions that inundate the area, 66 

vegetation adapted for life in saturated soil conditions, and hydric soils (US Corps of Engineers, 67 

1987). Researchers have demonstrated the ability to detect these features from multispectral 68 

imagery, radar, and Light Detection and Ranging (LiDAR) data (Guo et al., 2017). Multispectral 69 
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imagery are the most commonly applied data in wetland studies (Guo et al., 2017; Klemas, 2011); 70 

however, spectral variables alone may be unable to distinguish wetlands due to spectral confusions 71 

from reflectance and backscattering (Dronova, 2015; Kim et al., 2011). LiDAR data are well-suited 72 

to complement multispectral analyses due to its wide, and growing, availability and demonstrated 73 

benefit to wetland mapping (Guo et al., 2017; Klemas, 2011; Kloiber et al., 2015; Lang & McCarty, 74 

2014; Snyder & Lang, 2012). LiDAR returns can be interpolated to create high-resolution digital 75 

elevation models (DEMs), from which wetland indicators based on flow convergence and near-76 

surface soil moisture can be derived (Lang et al., 2013; Lang & McCarty, 2014; Millard & 77 

Richardson, 2013, 2015; O’Neil et al., 2018, 2019). Moreover, researchers have shown the benefit 78 

of LiDAR DEM metrics as input variables to traditional machine learning techniques, such as 79 

random forests, for wetland mapping and classification (e.g., Deng et al., 2017; Kloiber et al., 80 

2015; Millard & Richardson, 2013; Millard & Richardson, 2015; O’Neil et al., 2018, 2019; Zhu 81 

& Pierskalla, 2016).  82 

The successful coupling of LiDAR and multispectral imagery with traditional machine 83 

learning techniques for wetland identification is well-documented. However, deep learning for 84 

remote sensing studies, including wetland identification, is a new application space (Ma et al., 85 

2017; Zhang et al., 2016) that shows promise for fulfilling the unmet need for wetland inventory 86 

creation. Deep learning architectures are modeled after the architecture of the mammal brain (Serre 87 

et al., 2007), where inputs are perceived and processed through multiple layers of abstraction. 88 

Convolutional neural networks (CNNs) (LeCun et al., 1998) are a representative form of deep 89 

learning that is used for visual recognition. CNNs utilize the spatial context of detected features to 90 

identify objects and classify scenes. The distinguishing element of CNN architectures are the 91 

convolutional layers, which convolve spatial filters over input images to identify patterns that are 92 
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characteristic of target classes. Deep convolutional neural networks (DCNNs) (He et al., 2016; 93 

Krizhevsky et al., 2017; Simonyan & Zisserman, 2014) and fully convolutional neural networks 94 

(FCNs) (Long et al., 2015) are extensions of the CNN framework that can output dense pixel-wise 95 

classifications within images (i.e., semantic segmentation), where each pixel of the input image is 96 

assigned a class.  97 

Since the formalization of the concept in 2006 (Hinton et al., 2006), deep learning has 98 

advanced the fields of speech recognition, medical diagnosis, and autonomous driving 99 

applications, and has since motivated new applications in environmental and water resources 100 

management (Liu et al., 2018; Pan et al., 2019; Shen, 2018; Zhang et al., 2016). Researchers have 101 

shown the ability of DCNNs, FCNs, and other CNN extensions to delineate urban and natural 102 

landscape classes using multispectral imagery and topographic data (Audebert et al., 2017, 2018), 103 

multispectral imagery and LiDAR point clouds (Xu et al., 2018), and multispectral imagery alone 104 

(Hu et al., 2018; Kemker, Gewali, et al., 2018; Kemker, Salvaggio, et al., 2018; Scott et al., 2017). 105 

Few researchers have applied DCNNs and FCNs specifically to wetland classification. These 106 

include Liu et al. (2018), who applied orthoimagery and elevation information to deep learning 107 

models for wetland segmentation. In addition, Rezaee et al. (2018) used multispectral imagery in 108 

a wetland deep learning model, and posited that predictions would improve with the incorporation 109 

of physical information from radar or LiDAR sources. 110 

The typical need for massive validation sets to train deep learning models is a significant 111 

deterrent to environmental and water resources researchers (Shen, 2018; Zhang et al., 2016), as 112 

reliable training data is often lacking in these applications. This issue is especially prevalent for 113 

wetland identification that is intended to inform conservation and permitting efforts, where training 114 

data for computational models are ideally manually derived and confirmed by regulatory entities. 115 
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The effects of training data limits for wetland semantic segmentation have been investigated by 116 

Liu et al. (2018), where comparisons were drawn for a single study area using DCNNs, FCNs, 117 

random forests, and support vector machines, with privately contracted aerial imagery and surface 118 

elevation information as input features. While this is an important stride in gaining insight into the 119 

training data needs for deep learning of wetlands, an analysis has yet to be done that utilizes freely-120 

available data and is completed over multiple geographic regions.  121 

The growing research area of deep learning for remote sensing applications shows promise 122 

for advancing wetland mapping. Although researchers have begun to show the potential for 123 

wetland identification at a high resolution using deep learning approaches, research gaps remain. 124 

Specifically, analyses are needed to identify the deep learning performance potential for different 125 

geographic regions when limited to relatively small quantities of verification data and freely 126 

available input data, which are typical in practice. We aim to contribute to this field by presenting 127 

a novel wetland identification methodology that implements a basic semantic segmentation 128 

architecture and is generalizable because it leverages freely-available geospatial and remote 129 

sensing data. Our input data configuration consists of LiDAR DEM derivatives that describe 130 

geomorphologic and hydrologic contributors to wetland formation, as well as a commonly-used 131 

vegetative index. Using four study sites across Virginia, we build and evaluate several wetland 132 

models to demonstrate the potential for wetland semantic segmentation given typical training data 133 

resources. Through this research, we seek to answer the following questions. 134 

i. Across geographically distinct study sites, what wetland prediction accuracy is 135 
achievable by building site-specific models from typically available amounts of 136 
wetland delineation training data? 137 

ii. What is the potential for a single, combined-site model trained using data from across 138 
geographic regions to predict wetlands at each individual site? 139 



 

7 
 

Methodology 140 

Study Areas 141 

Four study areas across Virginia, USA are used in this analysis (Figure 1a). Data for each 142 

study area include the extents of wetland surveys and the surrounding Hydrologic Unit Code 143 

(HUC) 12 watershed (USGS, 2019b) (Figure 1b). The HUC 12 watersheds were used as processing 144 

extents and surveyed areas provided the validation data, also referred to as the study sites. The 145 

study areas span four level-III ecoregions. As shown in Table 1, the sites also vary by size, land 146 

cover, and topographic characteristics. Notable differences include the higher rate of development 147 

in sites 1 and 2, and the mild topography of Site 4. In addition, wetlands are much more abundant 148 

in Site 4, where the wetland to nonwetland ratio is 0.42, compared to less than 0.1 in the other 149 

sites. Note that all surveyed wetland types were merged into a single wetland category prior to use 150 

as verification data. 151 
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 152 

Figure 1. Four study areas spanning four level III ecoregions in Virginia, USA (a). Each study area includes the 153 

wetland survey limits, referred to as study sites, and the encompassing HUC 12 watershed, used as the processing 154 

extent (b). Reprinted from “Effects of LiDAR DEM Smoothing and Conditioning Techniques on a Topography‐155 

Based Wetland Identification Model” by O’Neil et al., 2019, Water Resources Research, 55 (5), 4343-4363. 156 
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Ecoregion data source: US EPA Office of Environmental Information. Aerial imagery data source: NAIP Digital 157 

Ortho Photo Image. 158 

 159 

  160 
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Table 1. Characteristics of each study site, including dominate land cover, topographic characteristics, and 161 

surveyed wetland distributions. Reprinted from “Effects of LiDAR DEM Smoothing and Conditioning Techniques on 162 

a Topography‐Based Wetland Identification Model” by O’Neil et al., 2019, Water Resources Research, 55 (5), 163 

4343-4363. 164 

  Site 1 Site 2 Site 3 Site 4 

Dominating Land Covera 

Turf Grass (35%), 
Developed (22%), 
Cultivated (20%), 
Forested (19%) 

Developed (36%), 
Turf Grass (31%), 

Forested (21%) 

Forested (73%), 
Developed (9%), 
Cultivated (9%) 

Forested (66%), 
Cultivated (18%), 

NWI Wetland 
(9%) 

Verification Area (km2) 2.8 1.6 1.8 5.6 
Min. Elevationb (m) 209 46 101 10 
Max. Elevation (m) 241 107 178 42 

10th Percentile Slopec (m/m) 0.02 0.01 0.04 0.01 
90th Percentile Slopec (m/m) 0.14 0.20 0.26 0.06 

Mean Slopec (m/m) 0.07 0.08 0.14 0.03 
Wetland : Nonwetland (m2/m2) 0.03 0.06 0.02 0.42 

Dominating Cowardin Wetland 
Type(s)d 

Palustrine 
Emergent (50%), 
Streams (20%)e 

Palustrine 
Forested (44%), 

Palustrine 
Emergent (33%) 

Palustrine 
Forested (56%), 
Streams (43%) 

Palustrine 
Forested (88%), 
Palustrine Shrub 

(9%) 
a Source: Virginia Information Technologies Agency (VITA) Land Cover classifications 
(https://www.vita.virginia.gov/integrated-services/vgin-geospatial-services/land-cover/). 
b In sites 1, 2, and 4, verification area varied slightly due to edge effects of applying filtering to DEMs. 
c Slope information was calculated from LiDAR DEMs resampled to a 5 m resolution to reduce effect of raw DEM noise on 
slope information. 
d Values are approximate and according to VDOT wetland surveying reports. 
e Wetland type for remaining 30% of wetland area was not reported. 
 165 

Input Data 166 

This study used publicly available LiDAR DEMs, National Agriculture Imagery Program 167 

(NAIP) aerial imagery, and field-mapped wetland surveys. LiDAR DEMs were obtained from the 168 

Virginia Information Technologies Agency (VITA) (VITA, 2016) as hydro-flattened, bare-earth 169 

DEMs. The LiDAR data used were collected and processed between 2010 and 2015 and have 170 

horizontal resolutions ranging from 0.76 m to 1.5 m. NAIP imagery are provided by the United 171 

Sates Department of Agriculture (Farm Service Agency, 2017). NAIP imagery were used to derive 172 

the NDVI. NAIP imagery contain four spectral bands (red, green, blue, and near-infrared) at a 1 173 

m spatial resolution. Imagery used in this study were collected near the dates of wetland surveying, 174 

https://www.vita.virginia.gov/integrated-services/vgin-geospatial-services/land-cover/
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and images were resampled to match the resolution of the LiDAR DEMs, if necessary. Wetland 175 

delineations and survey limits were provided by the Virginia Department of Transportation 176 

(VDOT) in polygon vector format and served as validation data for this study. All verification 177 

wetlands were manually surveyed during summer months (May – August) between 2013 and 2016 178 

by professional wetland scientists in compliance with transportation planning permitting. Wetland 179 

delineations for sites 2, 3, and 4 were also jurisdictionally confirmed by the US Army Corps of 180 

Engineers (USACE). Binary wetland/nonwetland geotiffs were created from these data, with 181 

resolutions matching those of the site LiDAR DEMs. Visual analyses of Google Earth images 182 

showed that the study site landscapes changed minimally between LiDAR acquisition and wetland 183 

delineation timeframes. 184 

Wetland Identification Method 185 

The wetland identification method consists of three main parts: preprocessing, feature 186 

creation, and semantic segmentation and accuracy assessment (Figure 2). Input data required 187 

include high-resolution DEM data, four-band aerial imagery, and validated wetland/nonwetland 188 

distribution data, all in geotiff format. From these data, topographic indices (curvature, 189 

Topographic Wetness Index, and Cartographic Depth-to-Water index) and the Normalized 190 

Difference Vegetation Index are calculated. These input features are merged into a single four-191 

band composite grid. Smaller image tiles are created from the composite grid and validation data, 192 

and the pairs of corresponding image tiles are randomly separated into training and testing datasets. 193 

Finally, dense pixel-wise wetland predictions are made using a deep learning architecture created 194 

for remote sensing data, DeepNets for Earth Observation (Audebert et al., 2018), and the accuracy 195 

of wetland predictions is assessed. The main outputs are geotiff wetland predictions for each image 196 

tile and an accuracy report for the entire validation data area. The method was implemented using 197 
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open source Python libraries and is available under an MIT license (see Software Availability 198 

section). 199 

 200 
Figure 2. Overview of the proposed wetland identification method. Green shapes indicate input data, grey shapes 201 

indicate processes, yellow shapes indicate intermediate output, and red shapes indicate final model output. 202 
1Audebert, N., Le Saux, B., & Lefèvre, S. (2018). Beyond RGB: Very high resolution urban remote sensing with 203 

multimodal deep networks. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 20-32. 204 
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Preprocessing 205 

DEM preprocessing was necessary to create an improved land surface representation from 206 

which to calculate indicators of wetland geomorphology. First, DEM smoothing is performed, 207 

which is necessary to addresses microtopographic noise. Microtopographic noise is common in 208 

high-resolution DEMs and can be representative of either erroneous data or true variations in the 209 

elevation of vegetated surfaces (Jyotsna & Haff, 1997). DEM conditioning is then executed, which 210 

is necessary prior to modeling hydrologic flow paths, as it addresses topographic depressions 211 

(Jenson & Domingue, 1988; O’Callaghan & Mark, 1984). Topographic depressions interfere with 212 

overland flow path modeling by creating discontinuities in flow paths and accumulating water, 213 

which negatively influences modeled watershed processes (Grimaldi et al., 2007; Lindsay, 2016; 214 

Lindsay & Creed, 2005). DEM conditioning is particularly important for hydrologic modeling 215 

from high-resolution DEMs, as researchers have found that sensitivity of hydrologic parameter 216 

extraction to conditioning technique increases significantly with DEM resolution (Woodrow et al., 217 

2016). Although many techniques have been proposed for both DEM smoothing and conditioning, 218 

we apply the Perona-Malik smoothing and A* least-cost path conditioning. This preprocessing 219 

combination was found to considerably improve wetland identification for the study sites in prior 220 

study (see O’Neil et al., 2019). The Perona-Malik filter (Perona & Malik, 1990) performs a 221 

nonlinear, anisotropic diffusion that preserves feature edges by penalizing smoothing across 222 

estimated feature boundaries (Passalacqua, Do Trung, et al., 2010; Passalacqua, Tarolli, et al., 223 

2010). Perona-Malik smoothing was implemented using code from the nonlinear filtering module 224 

from PyGeoNet, an open source software for automatic channel network extraction from DEMs 225 

(Passalacqua, Do Trung, et al., 2010; Sangireddy et al., 2016). The A* least-cost path algorithm 226 

(Hart et al., 1968) determines the least-cost drainage paths through unaltered terrain and out of 227 
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sinks, thus avoiding unnecessary modification of the input DEM (Metz et al., 2011). The A* 228 

conditioning method was executed using the GRASS GIS r.watershed module (GRASS 229 

Development Team, 2017; Metz et al., 2011).  230 

 231 

Feature Creation 232 

Topographic Features 233 

In a prior study, we concluded that the curvature, Topographic Wetness Index (TWI) and 234 

Cartographic Depth-to-Water index (DTW) are successful topographic metrics for wetland 235 

identification for our study sites (O’Neil et al., 2018, 2019).  236 

Curvature of a surface can describe the degree of convergence and acceleration of flow 237 

(Moore et al., 1991), and studies have shown its capability to indicate saturated and channelized 238 

areas (Ågren et al., 2014; Hogg & Todd, 2007; Kloiber et al., 2015; Millard & Richardson, 2015; 239 

O’Neil et al., 2018, 2019; Sangireddy et al., 2016). Here we use laplacian curvature, defined as the 240 

second derivative of the elevation grid. Laplacian curvature has been shown to favor the extraction 241 

of natural channels rather than artificial drainage paths, and to more effectively identify channels 242 

in flat, developed landscapes compared to alternative curvature forms (Passalacqua et al., 2012). 243 

Thus, we found the laplacian curvature to be most suitable for our study areas which all encompass 244 

corridor projects and are partially developed (O’Neil et al., 2019). The curvature grid is created 245 

from the smoothed DEM using code adopted from PyGeoNet (Passalacqua, Do Trung, et al., 2010; 246 

“PyGeoNet,” 2019; Sangireddy et al., 2016).   247 

The ability of the TWI to indicate saturated areas is well-documented in the literature 248 

(Ågren et al., 2014; Lang et al., 2013; Millard & Richardson, 2015; Murphy et al., 2009; O’Neil 249 
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et al., 2018, 2019). The TWI relates the potential for an area to accumulate water to its tendency 250 

to drain water, defined as 251 

𝑇𝑇𝑇𝑇𝑇𝑇 = ln �
𝛼𝛼

tan𝛽𝛽
� (1) 

where α is the specific catchment area (contributing area per unit contour length) and tan(β) is the 252 

local slope (Beven & Kirkby, 1979). The TWI was created from the smoothed, conditioned DEM 253 

using the r.watershed program of GRASS GIS. This module calculates the α term using the 254 

multiple flow direction algorithm (Holmgren, 1994) and the β term using a GRASS GIS-calculated 255 

slope.  256 

Researchers have demonstrated the capability of the DTW to capture saturated areas as 257 

well (Murphy et al., 2007, 2009, 2011; O’Neil et al., 2018, 2019; Oltean et al., 2016; White et al., 258 

2012). The DTW assumes that the likelihood for soil to be saturated increases with its proximity 259 

to surface water, in terms of distance and elevation (Murphy et al., 2007). Calculated on a per-260 

pixel basis, the DTW is defined as 261 

𝐷𝐷𝑇𝑇𝑇𝑇 (𝑚𝑚) =  ���
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑𝑖𝑖

� 𝑎𝑎� ∗ 𝑑𝑑𝑝𝑝 (2) 

where 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the downward slope of pixel 𝑖𝑖 along the least-cost (i.e., slope) path to the nearest 262 

surface water pixel, 𝑎𝑎 is a factor accounting for flow moving parallel or diagonal across pixel 263 

boundaries, and 𝑑𝑑𝑝𝑝 is the pixel resolution (Murphy et al., 2007). Inputs required to calculate the 264 

DTW include a slope grid, representing cost, and a surface water grid, representing the source from 265 

which distance is calculated. We create the surface water grid directly from the LiDAR DEM using 266 

PyGeoNet, which performs a statistical analysis of curvature and uses geodesic minimization 267 

principles to predict stream lines (Passalacqua, Do Trung, et al., 2010; Sangireddy et al., 2016). 268 

Visual analyses showed that streams created by PyGeoNet better aligned with aerial imagery, 269 

compared to national hydrography data (i.e., NHD streams) and streams generated from the flow 270 
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initiation threshold method (Band, 1986; O’Callaghan & Mark, 1984; Tarboton, 1991) that is 271 

commonly used. PyGeoNet was executed using parameters suggested for engineered landscapes 272 

(see Sangireddy et al., 2016), which was found to produce accurate results across all sites in prior 273 

wetland model development (O’Neil et al., 2019). The PyGeoNet streams and slope grid were used 274 

as inputs to the GRASS GIS r.cost module (GRASS Development Team, 2017) to create the DTW 275 

grid. 276 

NDVI 277 

The NDVI is a commonly-used spectral index that relates plant biomass and stress and 278 

separates wet versus dry areas (Klemas, 2011; Ozesmi & Bauer, 2002). Researchers have used the 279 

NDVI as a wetland indicator in traditional machine learning frameworks (Corcoran et al., 2013; 280 

Dronova, 2015; Dronova et al., 2011; Guo et al., 2017; Mui et al., 2015; Rampi et al., 2014; Tian 281 

et al., 2016), as well as for general land cover classifications using deep learning frameworks 282 

(Audebert et al., 2017, 2018; Lee et al., 2019; Xu et al., 2018). The NDVI utilizes the red and the 283 

near-infrared bands (Carlson & Riziley, 1997), defined as 284 

𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 =  
𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑑𝑑 − 𝑅𝑅𝐼𝐼𝑑𝑑
𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑑𝑑 + 𝑅𝑅𝐼𝐼𝑑𝑑

 (3) 

The red band indicates surface layer chlorophyll, and therefore surface conditions of plants, and 285 

the near-infrared band is reflected from the inner leaf cell structure, indicating the abundance of 286 

plant tissue (Klemas, 2011). To calculate the NDVI, Eq. (3) was executed using NumPy operations 287 

and the appropriate NAIP imagery bands.  288 

Image Dataset Creation 289 

The image dataset creation produces two sets of image tiles: i) feature tiles representative 290 

of the composite grid of input features, and ii) validation tiles representative of ground truth 291 

wetland and nonwetland locations. Due to the irregular shapes of the field surveys, NoData pixels 292 
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existed within the rectangular extent of the validation data. Rather than reduce our validation data 293 

to an extent without unverified area, NoData pixels were treated as an additional target landscape 294 

class. Thus, all pixels in the validation data were categorized as NoData (0), nonwetland (1), or 295 

wetland (2) as a first step in the image dataset creation process.  296 

To build the dataset of feature tiles, each band of the composite grid is rescaled to a range 297 

of 0 to 1, per the requirements of the DeepNets algorithm. Rescaling the NDVI band was 298 

nontrivial, as these values have global minimum and maximum of -1 and 1. Conversely, the range 299 

of values for each of the topographic features depends on the landscape they are calculated from, 300 

therefore it was necessary to assume global minimum and maximum values. The range of each 301 

topographic input was analyzed across the study sites, and global minimum and maximum values 302 

that encompassed roughly 90% of the values were chosen. Note that only global maximum values 303 

had to be assumed for the TWI and DTW, which both have global lower bounds of 0 or nearly 0. 304 

Although this step generalizes portions of the study areas, this occurs only where there are extreme 305 

topographic features that occur infrequently. In addition, by limiting the range applied to each 306 

topographic input feature rather than choosing extreme, but encompassing, values, the significance 307 

of the relative distance between values is minimally affected. The minimum and maximum values 308 

used to rescale topographic features and the NDVI to a range of 0 to 1 are shown in Table 2.  309 

 310 
Table 2. Minimum and maximum values used to scale each input feature to a range of 0 to 1. Minimum and 311 

maximum values were assumed for the TWI, curvature, and DTW from statistical analyses. 312 

 TWI Curvature DTW NDVI 

Global Minimum 0 -3 0 -1 
Global Maximum 30 3 35 1 

 313 
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  Following these steps, the categorized validation grid and scaled composite grid were each 314 

separated into image tiles of size 320 x 320 pixels. We chose the 320-pixel size constraint to 315 

balance the desire to use image tiles large enough to depict heterogeneous landscapes and the need 316 

to separate the study site into enough images to sample training and testing tiles that were randomly 317 

dispersed. Feature and labeled image tiles sets were not considered for either training or testing if 318 

more than 80% of the area was populated with NoData pixels.   319 

Semantic Segmentation Model: DeepNets for Earth Observation 320 

Our model performs a semantic segmentation of input images, where each pixel of an input 321 

image is labeled as either NoData, nonwetland, or wetland. That is, a trained semantic 322 

segmentation model will assign a class prediction to each pixel in an image, however different 323 

instances of target class objects are not defined (i.e., instance segmentation).  324 

As an initial step in developing a deep learning wetland model, the current work is intended 325 

to demonstrate the suitability of a CNN to identify planning-scale wetlands in the landscape. We 326 

implemented a multimodal deep network, DeepNets for Earth Observation, for semantic 327 

segmentation classification (Audebert et al., 2017). DeepNets has emerged as a state-of-the-art 328 

tool for segmentation of high-resolution remote sensing data (Demir et al., 2018), and has been 329 

implemented and validated for automating segmentation of remote sensing data (Audebert et al., 330 

2016, 2017, 2018).  331 

Although DeepNets was chosen as a vehicle to address the guiding research questions of 332 

this work, it is among several deep learning architecture currently achieving competitively in 333 

semantic segmentation of satellite imagery. Ghosh et al. (2018) applied a Stacked U-Nets 334 

architecture to achieve high-quality satellite imagery segmentation with relatively few prediction 335 

parameters. Volpi and Tuia (2016) use a CNN to segment very high-resolution imagery to achieve 336 
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F1 scores of about 85%. Marmanis et al. (2018) propose a downsample-upsample and achieve 337 

similar results. While each of these approaches are likely to achieve good results with wetlands 338 

segmentation, DeepNets achieved slightly higher results on segmentation of benchmark imagery 339 

datasets (Demir et al., 2018), thus it was adopted for this study. An important future step in 340 

progressing this research would be to perform a comparative analysis of other emerging deep 341 

learning techniques for wetland segmentation. 342 

As a starting point in the development of our deep learning wetland model, the baseline 343 

DeepNets architecture is implemented here (Audebert et al., 2018, 2019). DeepNets builds on the 344 

SegNet architecture (Badrinarayanan et al., 2017) and is implemented using PyTorch (Paszke et 345 

al., 2017). SegNet produces predictions with the same resolution as the input image by using an 346 

encoder-decoder structure, making it well-suited for classification of landscape objects from 347 

georeferenced images (Audebert et al., 2018; Badrinarayanan et al., 2017). The encoder portion of 348 

SegNet is based on the convolutional layers of VGG-16 (Simonyan & Zisserman, 2014), and 349 

consists of convolutional layers, batch normalization, a rectified linear unit, and max-pooling. As 350 

shown in the inset image (defined by Audebert et al., 2018) in Figure 2, the decoder is structurally 351 

symmetrical to the encoder. Pooling layers are replaced with unpooling layers that relocate pixel 352 

activations from the smaller feature maps to corresponding indices of zero-padded upsampled 353 

images. Convolution blocks are then used to densify the sparse pixel activations. This sequence of 354 

unpooling and convolutions is repeated until feature maps reach the original spatial resolution. 355 

Following this, a softmax layer is used to compute multinomial logistic loss. Another feature of 356 

the DeepNets approach is the generation of predictions at several resolutions, and the calculation 357 

of loss at these intermediate resolutions. In doing so, the DeepNets model predicts a semantic map 358 

at full resolution as well as smaller resolutions, which are averaged together to obtain a final full-359 
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resolution semantic prediction. Lastly, a sliding window approach is used to extract smaller 360 

patches within each input image, which acts as data augmentation. For further details on the 361 

DeepNets architecture, we direct readers to Audebert et al. (2018). 362 

Following procedures demonstrated by Audebert et al. (2016, 2017, 2018), we incorporate 363 

the NDVI and elevation data into our DeepNets model. However, rather than using the original 364 

elevation grid as an input, we guide the learning of the model by deriving specific geomorphic and 365 

hydrologic features from the DEM as inputs. This strategy was chosen following a hypothesis that 366 

wetland predictions would improve if a deep learning model trained from explanatory variables 367 

that are specific to wetlands. In our implementation of DeepNets, we also applied class weights, 368 

which are related to the importance of correct predictions for a specific class when calculating the 369 

loss. We used this feature to account for the imbalance between the wetland and nonwetland 370 

classes across all sites, as well as to decrease the importance of NoData areas. Lastly, we allow for 371 

data augmentation in the form of mirroring images and flipping the orientation. Parameters for the 372 

DeepNets model incorporated into our wetland model workflow are given in Table 3. Note that 373 

these parameters were chosen as starting points to be later refined through additional model testing.  374 

Table 3. Parameters for the DeepNets implementation used in all performed experiments. 375 

Image tile size (# pixels) 320, 320 

Sliding window size (# pixels) 64, 64 

Sliding window stride (# pixels) 8 

Base learning rate 0.01 

Momentum 0.9 

Weight decay 0.005 

Training epochs 100 
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Class weights [NoData, Nonwetland, Wetland] [0.02, 0.08, 0.9] 

 376 

Accuracy Assessment 377 

In line with the intended environmental planning and permitting application, accuracy 378 

metrics were selected considering the higher importance of true positive (i.e., wetland) predictions 379 

versus true negative (i.e., nonwetland) predictions to wetland conservation. Model performance 380 

was evaluated in terms of wetland recall and wetland precision, calculated using the Scikit-learn 381 

Python library (Scikit-learn Developers, 2017). 382 

Recall, also known as the true positive rate, represents the percentage of true wetlands that 383 

were predicted, and is defined as 384 

𝑅𝑅𝐼𝐼𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑤𝑤𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑 𝑝𝑝𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖𝑝𝑝𝑤𝑤𝑖𝑖𝑝𝑝𝑤𝑤𝑝𝑝
𝑇𝑇𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑇𝑇𝑇𝑇𝑇𝑇 𝑤𝑤𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝑝𝑝

. (4) 

Recall can be considered the priority indicator of model performance given the importance of the 385 

minority wetland class, a choice also supported by statistical literature (Branco et al., 2016; Chen 386 

et al., 2004; Sun et al., 2007). Precision is used to account for model overprediction. Unlike the 387 

commonly-used specificity, precision is not biased by large numbers of true negative instances, 388 

and therefore can be considered more representative for imbalanced scenarios (Branco et al., 2016; 389 

Sun et al., 2007). Precision represents the percentage of wetland predictions made that were 390 

correct, defined as  391 

𝑃𝑃𝐼𝐼𝐼𝐼𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝐼𝐼 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑤𝑤𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑 𝑝𝑝𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖𝑝𝑝𝑤𝑤𝑖𝑖𝑝𝑝𝑤𝑤𝑝𝑝
𝑇𝑇𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑 𝑝𝑝𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖𝑝𝑝𝑤𝑤𝑖𝑖𝑝𝑝𝑤𝑤𝑝𝑝

. (5) 

It should be noted that the appropriate selection of accuracy metrics remains an open problem 392 

not only for semantic segmentation, but for classification tasks in general, and additional criteria 393 

have been proposed and widely used. We found recall and precision to be more suitable for model 394 

assessment compared to commonly used options, such as overall accuracy, Kappa statistic, and 395 
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Matthews Correlation Coefficient (MCC). When using overall accuracy, detection rate of the 396 

minority class has a lower impact than that of the majority class (Branco et al., 2016; Chen et al., 397 

2004), misrepresenting a wetland model predicting all nonwetland instances as very accurate. 398 

Moreover, the Kappa statistic is biased by sample size, and can increase as the wetlands to 399 

nonwetlands ratio increases, even if wetland recall decreases (Ali et al., 2014; Byrt et al., 1993). 400 

Both overall accuracy and the Kappa statistics have been omitted from wetland classification 401 

studies for these reasons (Baig et al., 2014; Zhu & Pierskalla, 2016). Although the MCC metric 402 

has been shown to be suitable for imbalanced scenarios (e.g., Boughorbel et al., 2017), its takes 403 

into account the number of true negative samples.  404 

Experimental Setup 405 

Addressing Research Question 1: Creating Site-Specific Models 406 

Experiments 1 and 2 (Figure 3A) were designed to offer insight into potential wetland 407 

accuracy given varying sizes of reliable training sets, evaluated over four geographic regions. In 408 

Experiment 1, we created models that sample training images from the area to be mapped (i.e., 409 

site-specific models). For each site, 70% of eligible image sets were randomly selected, producing 410 

the maximum training set size available, which varied based on site size (Table 4). To compare 411 

how models of different ecoregions perform given the same training resources, site-specific 412 

models were created and evaluated at each threshold of training set size. Experiment 2 applied the 413 

site-specific models created through Experiment 1 (those using the maximum training set size) to 414 

predict wetlands in the other sites. Thus, Experiment 2 represents the scenario where a pretrained 415 

wetland model is applied for a new area for which training data is unavailable.  416 
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Table 4. Maximum number of training images available per site when randomly sampling 70% of the eligible 417 

validated area. Each labeled image used for training has a resolution of 320 x 320 pixels. 418 

Site Maximum training sets size (# images) 

Site 1 31 
Site 2 9 
Site 3 28 
Site 4 77 

 419 

Addressing Research Question 2: Creating Combined-Site Models 420 

Experiments 3 and 4 (Figure 3B) aim to evaluate the potential for improving wetland 421 

accuracy by incorporating training data from different geographic regions into a single model. In 422 

Experiment 3, a wetland model is trained using the largest training sets available from each site 423 

(i.e., “general model”). In Experiment 4, a model is created using the maximum training data from 424 

two sites within the same ecoregion: Site 2 and Site 3 (i.e., “ecoregion model”). Both experiments 425 

aim to gain insight into the change in wetland predictions when the model learns wetland 426 

characteristics that exist for a range of landscapes.  427 
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428 

Figure 3. Methodology followed for the four experiments designed to address the study research questions. 429 

 430 



 

25 
 

Results 431 

Performance of Site-Specific Models 432 

For Experiment 1, site-specific models were built using training data quantities ranging from 433 

9 to 77 images, depending on validation data extents (Figure 4). The resulting 10 sets of wetland 434 

predictions were evaluated for the testing area complementing the training data quantity used. 435 

Results show that the best performing models for each site were those trained using the maximum 436 

training set size available, equal to 70% of the validation area. Conversely, the lowest performing 437 

models across all sites occurred when using the fewest training data, nine images. The Site 4 model 438 

trained with 77 images achieved the highest wetland recall and precision across all site models. 439 

The Site 4 model also outperformed other sites when limited to the same number of training images 440 

(Figure 4). The overall lowest performing model was built for Site 2, which also had the smallest 441 

training dataset available, only nine images.  442 

While the improvements in prediction accuracy as training data increased were expected, 443 

intermediate changes in accuracy were inconsistent. For Site 3, recall increased considerably (46% 444 

to 85%) and precision increased slightly (17% to 20%) when increasing training images from 9 to 445 

28. However, changes in model accuracy were less significant for Site 1, where the most notable 446 

accuracy improvement occurred when increasing training data from 28 to 31 images, which 447 

increased recall from 70% to 81% and precision from 22% to 25%. Models built for Site 4 448 

performed consistently, maintaining high performance regardless of training set sizes ranging from 449 

9 to 77 images. For Site 4, recall only varied between 84% and 91% and precision between 50% 450 

and 56%. It was unexpected that Site 4 did not improve more notably when increasing the training 451 

dataset from 31 to 77 images, as this was the largest increase in training set studied. This may be 452 
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due to the fact Site 4 has the most balanced wetland to non-wetland areas, so fewer training images 453 

are needed to create an accurate model. 454 

 455 

Figure 4. Wetland mapping accuracy resulting from Experiment 1, where site-specific models were created using 456 

several training data sizes depending on site availability. 457 

Using Site-Specific Models to Predict Wetlands in Other Sites 458 

Experiment 2 resulted in an additional 12 sets of results, where the best performing site-specific 459 

models (i.e., those trained with the maximum training data set size) were used to predict wetlands 460 

in the other sites. The evaluation of these trials represents wetland prediction accuracy for the 461 

entirety of the site validation area, and the results achieved by applying the site-specific models 462 

for their own areas are also shown for reference (Figure 5). In most cases, utilizing training 463 

information from a different area, even if this represented a greater quantity of data, did not 464 

improve predictions compared to those resulting from a model trained for its own area. Site 2 was 465 

the exception for this trend, as both recall and precision improved when using any of the models 466 
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built for other sites, compared to using the Site 2 model. Moreover, the Site 2 model produced 467 

more accurate wetland predictions when applied to the other sites, compared to its own testing 468 

area. Although the predictions for others sites resulting from the Site 2 model were still among the 469 

lowest accuracies per site, this suggests there may be topographic or spectral confusion between 470 

Site 2 training and testing data. Also, there was an unexpected increase in precision when applying 471 

the Site 1 model versus the Site 4 model for Site 4 predictions. However, since both wetland 472 

precision and wetland recall should be considered when summarizing model performance, the 473 

significantly greater recall achieved by the Site 4 model leads us to conclude that the Site 4 model 474 

outperformed the Site 1 model here. Lastly, the Site 4 model resulted in the highest recall scores 475 

and among the lowest precision scores across all trials for sites 1, 2, and 3. This reflects a tendency 476 

of the Site 4 model to overpredict wetlands in other sites. This may be because Site 4 includes 477 

large, areal wetlands common in the coastal plain given its low relief topography, but uncommon 478 

in the other three sites that are outside of the coastal plain.  479 
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 480 

Figure 5. Wetland mapping accuracy resulting from Experiment 2, where the best performing site-specific models 481 

were used to predict wetlands in other sites. 482 

Performance of Combined-Site Models 483 

Experiment 3 resulted in the general model, trained with the maximum available training 484 

images from each site. When applying the general model to Site 1 testing areas, recall increased 485 

from to 81% to 89% and precision decreased from 25% to 18%, relative to the best performing 486 

Site 1 model (Figure 6). For Site 2 testing areas, the general model considerably improved wetland 487 

recall (28% to 40%) and minimally changed precision (3% to 2%), compared to the best 488 

performing site-specific model (Figure 6). The general model produced worse predictions than the 489 

site-specific model for Site 3, decreasing recall from 85% to 73% and precision from 20% to 15%. 490 

The general model performed nearly the same for Site 4 compared to the site-specific model, where 491 

recall remained high at 91% and precision increased by a small margin from 56% to 57%. These 492 



 

29 
 

results suggest that a general model trained with data collected across all sites would not be a 493 

suitable method for wetland prediction, at least with the current methodology and data availability.   494 

  Experiment 4 resulted in the ecoregion model, trained with the maximum available training 495 

images from sites 2 and 3, which share the Northern Piedmont ecoregion. This experiment tested 496 

the idea that a general wetland classification may be possible, but only within a single ecoregion 497 

and not across ecoregions as was attempted in Experiment 3. For Site 2, the ecoregion model 498 

produced worse predictions than the general model and the site-specific model, with recall 499 

decreasing to 21% and precision remaining nearly the same at 2% (Figure 6). In contrast, the 500 

ecoregion model improved wetland recall and precision for Site 3 (77% and 22%, respectively) 501 

compared to the general model, however this was not an improvement from the Site 3-specific 502 

model (Figure 6). This suggests that an ecoregion-specific classification model may be useful, but 503 

not more so than a site-specific model given the data available here.  504 
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 505 

Figure 6. Wetland mapping accuracy resulting from Experiment 3, which used training data from all sites to create 506 

a general model, and Experiment 4 which used training data only from sites within the same ecoregion (sites 2 and 507 

3) to create an ecoregion model. 508 

Discussion 509 

Potential for Site-Specific Models 510 

We found that site-specific models improved as more training data was sampled from the 511 

area to be mapped, with the best models created from the maximum training datasets studied: 70% 512 

of the validation area. However, performance did not improve consistently for sites at the 513 

intermediate training data thresholds. This outcome exemplifies that model improvement is an 514 

issue of not only increasing the quantity of training data, but also the quality. The performance 515 

inconsistencies may be due to unequal wetland distributions in each training image. For example, 516 

the training images introduced for Site 1 when increasing the training data threshold from 9 to 28 517 

images, may have provided very few wetland areas if the random selection included scenes with 518 

few or only small wetlands. In addition, it is possible that the random nature of the training image 519 
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set creation led to the introduction of some scenes with conflicting wetland/nonwetland signatures. 520 

As there is a benefit to identifying a training area threshold that begins to improve model 521 

performance across different sites, future work should include repeating this experiment with 522 

quality-controlled training data images and thresholds. Evaluating model performance across sites 523 

with training image thresholds at even increments of wetland and nonwetland area would result in 524 

more conclusive insights as to the changes in model performance as more training data becomes 525 

available. This being said, the overall improvements across the sites as training data increased to 526 

the maximum available set are likely due to the ability of the model to learn a wider range of 527 

wetland characteristics that exist in the additional landscape scenes.  528 

Figure 7 demonstrates the changes in wetland predictions as a result of increasing training 529 

data from nine training images (column A) to the maximum training images per site (column B).  530 

For sites 1, 3, and 4, increased training data reduced wetland overprediction surrounding the 531 

extents of ground truth wetlands, most notably for narrow wetland segments in sites 1 and 3. In 532 

addition, wetland predictions for these sites encompassed more of the true wetland area, most 533 

apparent for Site 4, where predictions densified for a relatively large wetland as a result of 534 

increasing the training data. Figure 7 also exemplifies the poor performance of the Site 2 model. 535 

Although the Site 2 model predicts wetlands as small, linear features that are representative of the 536 

nature of ground truth wetlands in the area, the predictions are relatively sparse and incorrect. By 537 

visually examining the input features and testing data for Site 2, we found that validation wetlands 538 

existed underneath dense tree canopy along a road corridor. Topographic metrics in this area 539 

indicated values corresponding to wetness within the true wetland boundaries, however, the NDVI 540 

showed constant values for most of the forested area. The lack of distinction between values by 541 

the NDVI is likely due to the source imagery, the NAIP, which is collected during the growing 542 
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season, with leaf-on conditions and is therefore affected by tree canopy. Moreover, the better 543 

performance for Site 4, even when using few training data, suggests that this landscape was 544 

particularly well-suited to the deep learning approach. This may be due to the large distribution of 545 

wetlands in Site 4, leading to a higher quantity of wetlands in the entire training data set as well as 546 

more significant presence of wetlands in each training image.  547 

Figure 7 also shows model predictions when using the Site 4-specific model. The Site 4 548 

model produced predictions with the highest recall scores of all model trials for sites 1, 2, and 3. 549 

As indicated by the increases in recall, predictions resulting from the Site 4 more densely 550 

encompassed the ground truth wetlands (Figure 7, column C), relative to results for the site-551 

specific models (Figure 7, columns A and B). Attributing to the lower precision scores also 552 

produced by the Site 4 model, wetland overprediction is apparent in the scenes for site 1, 2, and 3 553 

(Figure 7, column C). The wetland predictions for these sites are also made at a coarse resolution 554 

within image tile extents, evident by the rectangular edges of wetland predictions in sites 1 and 3 555 

(Figure 7, column C). In addition, a segment of a narrow wetland feature is omitted for Site 3 when 556 

applying the model trained for Site 4. Overall, these shortcomings demonstrate the potential for 557 

bias to a specific landscape and wetland type in site-specific models, which may lead to decreased 558 

accuracies when applied to different landscapes. This may be overcome by changing the 559 

classification strategy away from a simple wetland/non-wetland classification to one that classifies 560 

different wetland types, although this strategy was not explored through this research. The increase 561 

in recall scores when using the Site 4 model, and the concentration of wetland overprediction 562 

occurring in the adjacent and surrounding areas of the ground truth wetlands, suggests the noted 563 

shortcomings may also be addressed by using a more balanced sampling of different wetland types.  564 



 

33 
 

 565 

Figure 7. Comparison of wetland predictions produced by site-specific models created from (column A) the smallest 566 

training dataset and (column B) the largest training dataset available for the site. Also shown are wetland predictions 567 

produced by models trained only with the largest training dataset for Site 4 (column C). 568 
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 569 

Potential for Combined-Site Models 570 

Compared to the site-specific models, the general model mostly resulted in more wetland 571 

overprediction, but in some cases increased coverage of ground truth wetlands (Figure 8, column 572 

B). This trend is likely due to the bias of the general model to favor wetland types present in the 573 

Site 4 landscape, as more than half of all the training images used were from Site 4. While the 574 

general model results do not present an improvement from the site-specific models, there are 575 

improvements compared to wetland predictions resulting from a model trained only on Site 4 (see 576 

Figure 7, column C). By supplementing the Site 4 training data with wetland information from 577 

other landscapes, we see finer, more precise wetland prediction boundaries (Figure 8, Site 1 B and 578 

Site 3 B). For Site 2, the general model produced a greater overall amount of wetland predictions 579 

compared to the site-specific model, but predictions were inaccurate (Figure 8, column A vs. 580 

column B). However, the quantity of erroneous wetland predictions for Site 2 was greater when 581 

using the Site 4 model versus the general model. It was expected that predictions for Site 4 would 582 

be mostly unchanged between the site-specific model and the general model, due to the significant 583 

presence of Site 4 training data. However, the weak training data influence from other sites did 584 

slightly improve precision for Site 4, demonstrated by finer-scale edges of wetland predictions 585 

(Figure 8 Site 4 A vs. Site 4 B).  586 

The ecoregion model explored the potential for creating combined-site models that are 587 

specific to certain landscape characteristics by including training data only from within the same 588 

ecoregion (i.e., sites 2 and 3). Fewer wetland predictions were made overall for Site 2 using the 589 

ecoregion model (Figure 8, column C), which considerably reduced recall compared to the general 590 

model, but also resulted in sparser correct wetland predictions than the Site 2-specific model. For 591 
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Site 3, the ecoregion model improved both precision and recall compared to the general model, 592 

but results were still less accurate than the site-specific model. Compared to general model 593 

predictions, the ecoregion model regained correct wetland predictions for narrow, riparian wetland 594 

features for Site 3 (Figure 8, column C). The ecoregion model also reduced wetland overprediction 595 

compared to the general and site-specific models in the scenes shown in Figure 8, representative 596 

of the higher precision produced by the ecoregion model (22% vs. 20% by the site-specific model 597 

and 15% by the general model). However, wetland predictions resulting from the ecoregion model 598 

encompassed less ground truth wetland area overall relative to the Site 3-specific model.  599 

Although neither approach for creating a combined-site model was able to outperform site-600 

specific models, results show potential to refine and improve these methods. We found that the 601 

relatively poor performances of the general and ecoregion models were not likely caused by the 602 

unequal sampling of training data from the different geographic study areas. To investigate this 603 

potential source of error, the general model and the ecoregion model were recreated by limiting 604 

training data from sites to just nine images each, balancing the representation from each site. For 605 

all sites, the general model built with equal, but limited training data performed worse than the 606 

proposed general model. For Site 3, the ecoregion model built with limited training data performed 607 

considerably worse, where recall decreased from 77% to 30% and precision improved slightly 608 

from 15% to 17%. For Site 2, however, the limited ecoregion model improved results slightly 609 

(recall increasing from 21 to 27% and precision remaining at 2%), but still not to an acceptable 610 

level of accuracy. Thus, improving the combined-site model approach may not just be a matter of 611 

equally sampling different landscapes, but also balancing an adequate amount of training data from 612 

different landscapes. Lastly, the lack of consistent improvement to Site 2 and Site 3 predictions 613 

when applying the ecoregion model suggests it would be beneficial to consider additional 614 
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landscape similarities when building combined-site models. Landscape characteristics to consider 615 

may be those that affect the distributions of topographic inputs, such as influence of built 616 

environment drainage and land cover.  617 
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618 

Figure 8. Comparison of wetland predictions resulting by (column A) the best performing site-specific models (i.e., 619 

those trained on 70% of the validation area), (column B) the general model, and (column C) the ecoregion model. 620 
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Utility of the Proposed Input Data Configuration 621 

This study explored an input data configuration unique to most deep learning applications 622 

where topographic derivatives of the input “image” (i.e., LiDAR DEM) are predetermined and 623 

specific to the target object (i.e., wetlands). The hypothesis was that predetermined elevation 624 

derivatives (TWI, DTW, and curvature) would improve wetland classification training by 625 

including hydrologic information, compared to training directly from the elevation data. To 626 

evaluate the efficacy of this method, we compared the accuracy achieved using our novel input 627 

data configuration versus two-band images composed of the LiDAR DEM and the NDVI, which 628 

is more representative of the common input data approach taken (e.g., Audebert et al., 2017, 2018; 629 

Latifovic et al., 2018; Liu et al., 2018; Silburt et al., 2018; Xu et al., 2018). The LiDAR DEMs 630 

used to create the two-band images were smoothed and hydrologically corrected, as suggested by 631 

O’Neil et al. (2019), and 70% of the areas were used for training for both model sets.  632 

For sites 1, 2, and 3, the proposed input data configuration outperformed the typical approach 633 

in terms of both recall and precision. Wetlands predicted from only the DEM and NDVI for Site 634 

1 achieved lower recall (73% vs. 81%) and precision (21% vs. 25%) compared to the models using 635 

the derived topographic indices and the NDVI. This suggests that combining physical 636 

understanding of the system, in this case hydrological and ecological characteristics of wetlands, 637 

helps to guide the deep learning algorithm so that it is able to obtain increased predictive skill. For 638 

Site 2, predictions learned from the DEM and NDVI encompassed only 12% of the ground truth 639 

wetlands with near 0% precision, compared to 28% recall and 3% precision achieved by the 640 

proposed approach. Wetland predictions for Site 3 lost considerable accuracy with the typical input 641 

data approach, producing 24% recall and 9% precision, whereas our approach resulted in 85% 642 

recall and 20% precision. For Site 4, this comparison showed that the model that learned from the 643 
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DEM and NDVI alone produced a higher recall (96% vs. 91%) and lower precision (49% vs. 56%). 644 

While this indicates that more ground truth wetlands were detected using the typical approach, it 645 

is slightly outweighed by the loss in wetland precision. Considering the consistent improvement 646 

to the other three sites, the lack of significant change in Site 4 when applying only the DEM and 647 

NDVI may suggest that the deep learning model relies more heavily on the vegetative 648 

characteristics provided by the NDVI than the geomorphologic and hydrologic information that 649 

the elevation data offers. This is likely due to the fact that Site 4 had the least topographic relief, 650 

being within the coastal plain. Results for Site 4 using a random forest classification (see O’Neil 651 

et al., 2019) also support this idea, showing that the topographic input variables were insufficient 652 

for describing wetland characteristics unless preprocessing methods were calibrated specifically 653 

to the area. Thus, it is logical that wetlands in Site 4 are better described by vegetative 654 

characteristics than topography, explaining the lack of change in predictions when replacing the 655 

topographic inputs with the DEM and leaving the NDVI input unchanged. 656 

Comparison of Deep Learning to a Random Forest Implementation 657 

To examine the potential for deep learning to advance the more commonly used random forest 658 

approach for wetland classification (e.g., O’Neil et al., 2019), we compared the performance of 659 

the site-specific deep learning models to a random forest classification with the same set of input 660 

variables. The random forest implementation follows the approach of O’Neil et al. (2019), but with 661 

the addition of the NDVI to the original set of inputs: the TWI, curvature, and DTW. The training 662 

sampling used in the O’Neil et al. (2019) study was maintained, where training data consists of 663 

randomly dispersed pixels that encompass only 15% of the validated wetland area and up to 8% 664 

of the validated nonwetland area. However, accuracy assessments for both the deep learning and 665 
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random forest models were limited to the extents of the testing image tiles that correspond to the 666 

deep learning approach.  667 

Compared to the Site 1 deep learning model, the random forest classification resulted in an 668 

improvement in recall from 81% to 91%, but a decrease in precision from 25% to 19%. For Site 669 

2, Random Forest improved recall considerably, from 28% to 78%, and slightly improved 670 

precision from 3% to 5%. The Site 3 random forest model produced no change in recall (85%) and 671 

a slight decrease in precision (20% vs. 18%), compared to deep learning. Finally, the Site 4 random 672 

forest model considerably decreased recall from 91% to 70% and increased precision from 56% 673 

to 64%, relative to the deep learning model. With the exception of Site 2, these findings show that 674 

deep learning was able to perform similarly to random forests (e.g., Site 1 and Site 3), and arguably 675 

better in some cases (e.g., Site 4). The poor performance in Site 2 further supports that the deep 676 

learning model was not sufficiently able to learn characteristics of wetland features that were very 677 

small and sparse relative to the landscape scenes in each training image. Similarly, the Site 4 results 678 

again support the idea that deep learning is better suited to detecting wetlands where they are areal 679 

and large relative to the landscape scene. In addition, an evaluation of the entire testing areas 680 

corresponding to the random forest models shows that the inclusion of the NDVI as a wetland 681 

indicator improves on the O’Neil et al. (2019) approach. Compared to the random forest models 682 

using only the topographic inputs, the addition of the NDVI improved wetland recall and precision 683 

in Site 1 (81% vs. 88% and 19% vs. 24%), Site 2 (82% vs. 88% and 16% vs. 22%), Site 3 (83% 684 

vs. 86% and 22% vs. 25%), and Site 4 (58% vs. 68% and 47% vs. 54%). 685 

Overall, it is important to note that the random forest models were able to achieve these 686 

accuracies by sampling much less training data than was required for deep learning models. 687 

However, this result also shows that deep learning models can approach the same accuracies using 688 
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training data resources that are considerably smaller relative to most deep learning applications. In 689 

addition, the similar performance of deep learning to random forests in three of the study sites 690 

supports findings by other researchers that state deep learning can improve landscape segmentation 691 

accuracy over traditional machine learning, such as support vector machine, maximum likelihood 692 

classification, and random forests, given enough training data (e.g., Hu et al., 2018; Latifovic et 693 

al., 2018; Liu et al., 2018; Mahdianpari et al., 2018). 694 

Limitations 695 

Limitations of this approach could be addressed through additional research. For example, 696 

incorporating Class Activation Mapping (CAM) (Zhou et al., 2016), which highlights scene 697 

elements that are most influential during classifications, would offer further insight into model 698 

learning. By utilizing CAM, model refinements could be made by quantifying the impact of the 699 

input data and identifying sources of error. Considering additional remote sensing data may also 700 

improve model performance. These may include LiDAR point clouds, which researchers have 701 

incorporated into 3-dimensional CNNs for wetland identification (e.g., Xu et al., 2018). Also, 702 

incorporating radar data may reduce errors where the NDVI is affected by tree canopy, as it is able 703 

to penetrate this layer and provide vegetation density and inundation information for wetland 704 

mapping (Allen et al., 2013; Behnamian et al., 2017; Corcoran et al., 2013; Kloiber et al., 2015; 705 

Millard & Richardson, 2013). Also on this point, the contribution of each input data source 706 

throughout the DeepNets workflow can be handled in a more sophisticated way. This was 707 

demonstrated by Audebert et al. (2018) who proposed novel data fusing methods for elevation data 708 

and the NDVI within the DeepNets workflow to improve land cover classifications.  709 

Additional training information that consists of accurately delineated wetlands from across 710 

different ecoregions should improve the deep learning classification results. Also, additional 711 
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training data would make it possible to train models for specific wetland types rather than a simple, 712 

binary wetland/nonwetland classification. These training data are likely available from state and 713 

federal agencies given the need for wetland assessments under the Clean Water Act, but are not 714 

collected into a single, standardized repository. Future work could focus on building such a 715 

training and testing repository for wetland classification. Furthermore, to more efficiently make 716 

use of any amount of reliable training information available, applying more sophisticated data 717 

augmentation techniques may improve wetland predictions, as demonstrated by Stivaktakis et al. 718 

(2019).  719 

Refinements to the current approach should also include more robust accuracy assessments. 720 

The current accuracy metrics are transparent and represent the two factors that are needed for 721 

reliable implementation: coverage of ground truth wetlands and limited overprediction. However, 722 

a single accuracy metric that encompasses both of these factors while also acknowledging the 723 

significantly higher importance of wetland recall would improve the interpretation of model 724 

results. Model evaluation improvements should also take into account the diffuse boundaries of 725 

wetlands which may fluctuate seasonally by penalizing overprediction less if it occurs adjacent to 726 

or surrounding defined ground truth wetland extents. Lastly, this study did not test the effect of 727 

tuning the DeepNets parameters. Among other parameter adjustments, future work should explore 728 

the benefit of adjusting window sizes based on target wetland size and the accuracy tradeoffs when 729 

training the model for more epochs.  730 

Conclusions   731 

We explore a wetland identification workflow that implements a basic semantic 732 

segmentation architecture and an input data configuration that consists of the NDVI and LiDAR 733 

DEM-derived indicators of wetland hydrology and geomorphology. The workflow was trained and 734 
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evaluated using available data resources from four geographic regions of Virginia. From this work, 735 

we draw the following conclusions.  736 

i. Site-specific deep learning models created from relatively small training datasets 737 

can achieve accurate results. For three of the four study sites, wetland recall ranged 738 

from 81 to 91% and precision ranged from 20 to 56%, when training models with 739 

70% of site area and testing on the remaining 30% of the site area.  740 

ii. Site-specific models were more successful for areas where wetlands are abundant 741 

and occupy a significant portion of training images. For a site with large, areal 742 

wetlands that were almost evenly balanced with nonwetland areas, high accuracy 743 

was achieved with 7.5 km2 (70%) of training area (91% recall and 56% precision). 744 

Using a much smaller training area, 0.4 km2 (10% of the study area), still resulted 745 

in a fairly accurate model (84% recall and 50% precision).  746 

iii. In most cases, accuracy decreased when using models trained for another site. 747 

However, the site-specific model trained with the largest area studied (7.5 km2) 748 

increased wetland recall in all other sites. Although model predictions were 749 

imprecise and showed a bias towards the types of wetlands for which it was trained 750 

(i.e., large, areal wetlands), the correct localization of wetland predictions suggests 751 

there is potential for this approach if models are trained with sufficient data and for 752 

areas with similar landscapes. 753 

iv. Combined-site models can produce accurate wetland predictions, but training data 754 

contributions from the target landscapes should be balanced. The general model 755 

revealed the potential for bias towards landscape characteristics more heavily 756 

represented in the training data. However, the influence of less represented sites 757 
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was still apparent, as wetland predictions were more inclusive of different wetland 758 

types compared to a model created without training data from these sites.  759 

v. Shared ecoregion alone may not offer sufficient landscape similarities to improve 760 

the training sampling approach for combined-site models. The ecoregion model 761 

showed accuracy improvements from the general model for one site. However, 762 

wetland predictions for the other site were less accurate. Future work should 763 

explore the benefit of creating combined-site models from areas that share 764 

additional characteristics that would affect the distributions of the topographic 765 

derivatives, such as level of development, land cover, and topography.  766 

vi. The proposed input data configuration improves wetland identification compared 767 

to a more typical approach of using the NDVI and the LiDAR DEM alone. By 768 

predetermining the derivatives of the DEM that are wetland indicators based on 769 

physical understanding of hydrology and wetland formation, rather than allowing 770 

the deep learning network to determine these through convolutions on raw data, 771 

wetland predictions were more accurate in three sites. This speaks to the benefit 772 

and power of combining physical understanding along with machine and deep 773 

learning algorithms for improved predictive skill. For the remaining site, accuracy 774 

was nearly unchanged between the two approaches. However, analyses show that 775 

this is likely due to the greater importance of the NDVI for identifying wetlands in 776 

the topographically mild landscape.     777 

vii. Compared to a random forest approach, the best performing models produced 778 

comparable accuracy, using more training data than required for random forest, but 779 

still significantly less than what is typical in most deep learning applications.  780 
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Our results demonstrate the potential for deep learning to not only improve accuracy 781 

compared to traditional machine learning algorithms, but also provide flexible models that are 782 

accurate for a range of landscapes. Paramount to achieving this will be larger efforts within the 783 

research community to gather reliable training data and pretrained models stored as open source 784 

repositories, as has been done for established deep learning fields (e.g., Lecun, 1999; Lin et al., 785 

2014). The wetland models created through this research may offer a starting point for creating a 786 

repository open to other researchers. By refining this implementation of the deep learning wetland 787 

workflow and further training the created models, there is potential for deep learning to support a 788 

range of wetland conservation efforts by producing accurate wetland inventories across many 789 

landscapes. 790 
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