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Abstract 6 

This paper compares flood top width predictions generated by a 1-D flood model (HEC-7 

RAS) using surveyed and LiDAR-based topographic descriptions for varying storm event return 8 

intervals.  Three channel geometries are used in the analysis: (1) based entirely on survey data, 9 

(2) based entirely on LiDAR data and (3) based on a hybrid file that merges survey-derived 10 

channel bank locations and LiDAR-derived cross sections.  The study area is a 6.6-km river 11 

reach located in the Piedmont area of North Carolina.  Four steady flow simulations are 12 

performed representing the 10-year, 50-year, 100-year and 500-year design storm events to 13 

understand the effect of storm return period on top width predictions using the three different 14 

topographic descriptions.  The results from the study suggest that the LiDAR derived geometries 15 

generally predicted higher widths compared to the survey geometries, and that the magnitude of 16 

the difference is inversely related to the storm even return interval (12% average difference for a 17 

10-year storm event to 4% for a 500-year storm event). 18 
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  Introduction 1 

 Extreme flood events are a major natural hazard that affects communities worldwide. 2 

Flooding threats are likely to increase given climate change predictions that suggest higher sea 3 

levels and more intense cyclonic weather systems and precipitation (IPCC 2001).  Several 4 

studies have shown that the frequency, distribution, and causes of floods over the last thirty years 5 

have increased in several areas of the world, including several areas in the United States (WMO 6 

2003).  Mitigation of flood losses requires accurate and current floodplain maps.   However, 7 

floodplain maps and management studies have been expensive to produce and keep up-to-date.  8 

In addition, modeling of channels and floodplain geometry has traditionally been performed 9 

using survey data that is time consuming to gather.  Today, new technologies such as GIS, GPS, 10 

and remote sensing are helping floodplain managers to create accurate and current floodplain 11 

maps with improved efficiency and speed, and at a reasonable cost (NAS 2007; Shamsi 2001).   12 

In 1997, the Federal Emergency Management Agency (FEMA) initiated the Map 13 

Modernization Program to update their database of approximately 100,000 Flood Insurance Rate 14 

Maps (FIRMs).  After the massive 1999 flood caused by Hurricane Floyd in eastern North 15 

Carolina, critical weaknesses were identified in the rescue, recovery, and mitigation efforts of the 16 

flood (USACE and FEMA 2000).  Two weaknesses identified were (1) that the original FIRMs 17 

only delineate the 100-year event and (2) that the FIRMs were out of date and of limited utility 18 

during the flood.  As a response to the Map Modernization Program effort and the aftermath of 19 

Hurricane Floyd, the State of North Carolina, with the support of FEMA, undertook the North 20 

Carolina Floodplain Mapping Program (NCFMP 2003).   A major component of the NCFMP 21 

was the development and completion of statewide LiDAR (Light Detection and Ranging) Digital 22 

Elevation Model (DEM) at 6.1-m (20-ft) horizontal resolution.  These topographic data are used 23 
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with other digital information and field data to analyze flood hazards and delineate floodplain 1 

boundaries, which are depicted on Flood Insurance Rate Maps (DFIRMs) (FEMA 2003; NCFPM 2 

2003). 3 

The process of creating flood maps involves both hydrology and hydraulic modeling.  A 4 

common model used for the hydraulic portion of the analysis is the U.S. Army Corps. of 5 

Engineers’ River Analysis System (HEC-RAS).   HEC-RAS is capable of performing three types 6 

of one-dimensional hydraulic analyses: (1) steady flow water surface profile computations, (2) 7 

unsteady flow simulation, and (3) movable boundary sediment transport computations.  A key 8 

element is that all three analyses use a common geometric data representation and common 9 

geometric and hydraulic computation routines.  HEC-RAS is well tested and well suited to the 10 

applications necessary for flood mapping, it is freely available, and it is approved by FEMA. For 11 

these reasons, it was the hydraulic model used in this study. 12 

The availability of high resolution digital elevation data through LiDAR instrumentation 13 

has the potential to provide an automated means for generating the channel cross section 14 

geometry files required by HEC-RAS.  However, while studies have quantified errors in cross 15 

sections generated by LiDAR, (Walker and Willgoose, 1999) or in flood inundation for single 16 

flow events (Wang and Zheng, 2005), few studies have quantified the relationship between 17 

predicted flood inundation extent (common called top width in engineering analysis) and storm 18 

event return interval for surveyed cross sections compared to LiDAR-derived cross sections.  19 

This work is an attempt to address this understudied topic to better understand the potential 20 

errors introduced when LiDAR is used in place of surveyed data for geometric representation in 21 

HEC-RAS. The study is performed on an approximately 6.6 km case study stream reach located 22 
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in the North Carolina Piedmont.  The two overarching research questions addressed in this paper 1 

are:  2 

(a) How do top widths predicted using geometry input derived from LiDAR differ from top 3 

widths predicted using traditional surveyed data?  4 

(b) Is there a relationship between differences in top width predictions and storm return 5 

interval? 6 

 7 

 Previous Work 8 

  Nearly a decade of research has been conducted on the use of LiDAR for deriving 9 

topographic descriptions for hydrologic and hydraulic modeling.  Marks and Bates (2000) 10 

reported in one of the first papers on the topic that, while LiDAR offered the potential to more 11 

accurately quantify topography and topographic change through repeat measurements, the 12 

density of the LiDAR response includes significant redundancy and, at the time, interpolation 13 

methods for reducing the data volumes were insufficient for use with numerical models.   Many 14 

researchers have worked to address the data reduction challenge in using LiDAR for hydrology 15 

and hydraulic modeling.  Two examples of this work are Bates at al. (2003), which proposed 16 

methods to optimize the assimilation of LiDAR data into numerical models, and Raber et al. 17 

(2007), which investigated the relationship between LiDAR post spacing and the accuracy of 18 

floodplain maps to understand the appropriate resolution for LiDAR generated DEMs.   19 

In addition to questions of optimal data reduction techniques, researchers have also 20 

investigated the sources and magnitudes of error introduced through the LiDAR data collection 21 

process, and have suggested ways in which these errors may impact flood prediction accuracies.  22 

Sources of uncertainty introduced through LiDAR data include instrument calibration, missing 23 
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data, and data filtering algorithms that extract bare earth points from LiDAR point clouds 1 

(French 2003; Zhang et al. 2003).  Hodgson and Bresnahan (2004) developed an error budget 2 

associated with the use of LiDAR for deriving elevations and found that system errors were the 3 

dominate source for errors followed by interpolation, horizontal displacement, and surveyor 4 

errors.   They defined system errors as factors related to the accuracy of the equipment used to 5 

collect the data and the data processing algorithms used to derive DEMs from raw LiDAR data.  6 

Merwade et al. (2008) identified terrain uncertainty as one of the primary sources of uncertainty 7 

introduced in flood inundation modeling, and the authors showed that even slight uncertainties in 8 

terrain estimations can lead to uncertainties in the predicted flood inundation extent.    9 

The larger question of the accuracy of topography as stored in digital elevation model 10 

grids has also been widely discussed in literature.  Prior to the application of LiDAR as a 11 

technology for parameterizing flood models,  Walker and Willgoose (1999) compared existing 12 

DEMs with resolutions of 6.25, 12.5, and 25.0 meters with ground surveys and studied the 13 

implications of the differences on hydrologic properties such as width functions, slope-area and 14 

cumulative area relationships.   They found properties such as cumulative area relationships and 15 

width functions to be poorly estimated by DEMs with coarse resolution, while slope-area was 16 

less sensitive to DEM spacing.   Wang and Zheng (2005) and Sanders (2007) likewise studied 17 

the accuracy of inundations based on different available DEM resolutions, but extended their 18 

work to also include remote sensing products including LiDAR.   This work focused on the 19 

sensitivity of flood model predictions to DEM resolution and found LiDAR to be more accurate 20 

than the National Elevation Dataset and other available DEMs that generally overestimated flood 21 

extents.  Cobby et al. (2003) described methods for improving a two dimensional flood model by 22 

decomposing the model's finite-element mesh to reflect floodplain vegetation features.  They 23 
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used an image segmentation system that converts the LiDAR height image into separate images 1 

of surface topography and vegetation height.  Use of the decomposed mesh allowed for better 2 

representation of the observed flood extent and prediction of velocity variations in the vegetation 3 

features areas, which are of use in predicting localized erosion and deposition patterns.  Finally, 4 

Tate et al. (2002) demonstrated a technique for combining digital elevation models (DEMs) with 5 

surveyed cross sections to create a more accurate geometric representation for floodplain 6 

modeling. 7 

While the topic of DEM resolution for flood modeling has been well studied, less work 8 

has been conducted on understanding how flood predictions vary for surveyed cross sections 9 

compared to cross sections based on remotely sensed DEMs.  Thus, the primary objective of this 10 

study is to examine the differences in the flood inundation predictions between LiDAR-derived 11 

and survey-derived geometry files for storms with different return intervals.  This research is 12 

important because quantification of the differences between the surveyed and LiDAR-derived 13 

geometries on hydraulic modeling has direct impact on the presumption that LiDAR data 14 

provides an appropriate surrogate for traditional surveyed cross sections.  One potential outcome 15 

of this work is to provide guidance regarding potential errors introduced when remotely sensed 16 

data is used in place of in-situ surveying for representing channel geometries in flood mapping 17 

and hazard management applications. 18 

 19 

 Methodology 20 

The research questions outlined in Section 1 are addressed through a case study where 21 

HEC-RAS is used to model a river reach represented with three different cross section 22 

geometries: (1) surveyed geometries, (2) LiDAR derived geometries, and (3) a hybrid of 23 
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surveyed and LiDAR derived geometries.  The model is used to simulate the maximum flood 1 

inundation extent for four different storm events (10-year, 50-year, 100-year and 500-year) under 2 

steady flow conditions.  All other parameters and conditions of the three models are held 3 

constant to isolate the impact of channel representation on top width predictions. 4 

 5 

 Equations for Flood Simulation 6 

The basic computational algorithm of HEC-RAS for steady flow conditions is based on 7 

the solution of the one-dimensional energy equation (Equation 1).  Water surface profiles are 8 

computed in an iterative procedure (the standard step method) that solves the energy equation for 9 

each cross section (HEC 2002).  The Energy equation is given as 10 

                                   (1) 11 

where is the depth of water at a cross section,  is the bed elevation of the main channel, is 12 

the average velocity at the cross section,  is the velocity weighting coefficient,  is the 13 

gravitational acceleration constant, and is the energy head loss. 14 

The energy head loss term (  is modeled by HEC-RAS as the sum of a friction loss 15 

term and a contraction or expansion loss term that accounts for river obstructions such as bridges 16 

and culverts.  The energy head loss is calculated using Equation 2  17 

                                                        (2) 18 
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where is a discharge weighted reach length, is a representative friction slope between 1 

locations one and two on the stream reach, and is an expansion or contraction loss coefficient.  2 

Velocity is related to channel conveyance and the friction slope according to Manning's Equation 3 

(Equation 3)  4 

                (3) 5 

where is discharge and K is the conveyance term.  Conveyance is a function of the channel 6 

geometry and the flow depth, as shown by Equation 4  7 

                    (4) 8 

where is Manning's roughness coefficient, is the flow area, and is the hydraulic radius.  R 9 

is calculated as A/P where A is the channel cross-section area and P is its wetted perimeter, both 10 

of which are dependent on the channel geometry. 11 

The computation algorithm used in HEC-RAS to solve this system of equations for the 12 

water surface elevation is to (1) assume a water surface elevation ( ), (2) calculate K and V 13 

based on the assumed water surface elevation, (3) solve for  and then  using Equation 2, (4) 14 

compute  using Equation 1, and (5) repeat steps 1-4 using the result from step 4 as the assumed 15 

water surface elevation in step 1 until the water surface calculated in step 4 converges on the 16 

water surface elevation assumed in step 1.  This study is primary concerned with predicting top 17 

width, which can be calculated from the water surface depth given the channel geometry.   18 
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Complications to this algorithm arise when flow conditions pass from supercritical flow 1 

to subcritical flow or from subcritical flow to supercritical flow.  For these situations, the model 2 

uses the full momentum equations for fluid flow to solve for the water surface elevation instead 3 

of the energy equation discussed here.  These transitions can occur with obstructions such as 4 

bridges or stream confluences, or with significant changes in the bed slope.  A complete 5 

description of the mathematics solved in HEC-RAS is available in the HEC-RAS Reference 6 

Manual (HEC 2002).  7 

 8 

 Experiment Design  9 

The overarching objective of this study is to estimate top width for different storm event 10 

return intervals and for the three identified geometric representations: (1) survey, (2) LiDAR and 11 

(3) hybrid.   This experiment is designed to quantify the differences in top width predictions to 12 

measure the sensitivity of the model to geometric representation.  It is not possible to perfectly 13 

describe the channel geometries for the case study reach.  Therefore one can only quantify 14 

relative errors (which we will call differences in this paper) between two measurement methods.  15 

That said, it is assumed that the surveyed channel representation is the "true" channel 16 

representation, because this is the de facto method used in flood mapping, and so the LiDAR 17 

channel representations are compared to the surveyed geometry.   18 

Three statistics are used to quantify the difference between top width predictions.  The 19 

mean difference (Equation 5) provides a measure of the average deviation of the predicted top 20 

width for all cross sections within the model and is calculated as  21 

      (5) 22 
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where   is the top width prediction using the surveyed geometry for the i
th

 cross section and 1 

 is the top width prediction using either the LiDAR or the hybrid geometry for the i
th

 cross 2 

section. The mean absolute difference (Equation 6) considers only the magnitude of difference 3 

between the top width predictions. 4 

         (6) 5 

Finally, the Root Mean Square Error (RMSE) (Equation 7) is a commonly used measure for 6 

model accuracy and quantifies the spread between the top width predictions for different 7 

geometry files.   8 

 

(7) 

These three statistics were calculated for each individual rainfall event as well as for all 9 

rainfall events combined.  The difference statistics give a direct assessment of the relative 10 

difference between inundation predictions between the three models and can be used to assess 11 

whether LiDAR-based geometries are over or under predicting the top width compared to 12 

survey-based geometries.  Thus, these statistics are presented and analyzed in light of the 13 

research questions presented in Section 1. 14 

 15 

Study Area 16 

The study area used for this analysis is Crooked Creek, a headwater stream located in 17 

western Durham County in the Piedmont region of North Carolina (Figure 1).  Crooked Creek 18 

has a watershed area of approximately 12.4 square km (4.8 square miles) and is a tributary of the 19 
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Eno River and then the Neuse River before flowing into the Pamlico Sound.  While the area 1 

immediately adjacent to the stream is mostly wooded, the watershed contains several 2 

developments and road crossings. The land use in the watershed is approximately 60% forest, 3 

30% developed, 9% pastures, cultivated areas and grass lands, and less than 1% open water and 4 

woody wetlands, according to the 2001 National Land Cover Dataset (Homer et al. 2007).    5 

 6 

 Analysis 7 

Two different sources of terrain data were acquired for this study.  First, the surveyed 8 

cross sections used by the State of North Carolina to generate their FEMA Flood Insurance Rate 9 

Map (FIRM) were obtained.  These cross sections were available as part of a HEC-RAS model 10 

that also included the channel obstructions, hydrologic and hydraulic parameters, and boundary 11 

conditions for the HEC-RAS model.  Sixty-nine cross sections and nine obstructions (culverts 12 

and bridges) were used to model the creek in HEC-RAS (Figure 2).  Figure 2 also shows the 13 

simulated 100 year flood based on predictions using the LiDAR geometry data.  Second, a 6.1-m 14 

(20-ft) resolution LiDAR-derived DEM developed by the North Carolina Flood Modernization 15 

Program NCFMP was obtained and, for the same cross section locations in the State's HEC-RAS 16 

model, a second set of cross section elevations were generated by using HEC-GeoRAS to extract 17 

elevation values from this LiDAR-based DEM (HEC 2005).   18 

The two topographic data sources where used to generate three input geometry files for 19 

HEC-RAS: (1) surveyed, (2) LiDAR, and (3) hybrid.  The surveyed geometry was taken directly 20 

from North Carolina’s HEC-RAS model.  The LiDAR-based geometry input file was generated 21 

using HEC-GeoRAS where LiDAR estimations of elevation were extracted along the surveyed 22 

cross section to create a new input geometry file.  The location of the channel centerline in the 23 
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LiDAR geometry was identified using hydrologic terrain processing tools available in the 1 

ArcGIS Spatial Analyst Extension (Kopp 1998), while the banks were estimated based on the 2 

shape of the cross section.  The hybrid file was created by using the elevations extracted from the 3 

LiDAR data and the surveyed geometry for the channel bank locations.  Figure 3 presents an 4 

illustration of the hybrid data combination.  5 

The primary reason for creating the hybrid dataset was to enforce channel back locations 6 

at culverts. When a culvert is modeled in HED-RAS, the geometry describing the culvert flow 7 

area is contained within the cross sections directly upstream and downstream of that culvert.  If 8 

the sources of the geometry data used to describe the culvert geometry and location are not in-9 

line with the data used to describe channel cross section locations, this spatial misalignment may 10 

cause errors in the hydraulic calculations.  The purpose of the Hybrid dataset, therefore, is to test 11 

if minimal surveyed data about culvert bank locations significantly improved the LiDAR-based 12 

predictions.   13 

          Four design storm simulations with seven flow changes along the creek for each 14 

simulation were modeled.  This inflow data was inserted into the HEC-RAS model at the flow 15 

exchange points were developed using the NRCS hydrology methods with Type II rainfall 16 

distribution.  Table 1 contains a summary of the hydrologic data used in the study to calculate the 17 

flow input to the Crooked Creek reach and the sub-watersheds are shown in Figure 2.  As 18 

previously stated, the other properties of the HEC-RAS model (the obstructions, hydrologic, and 19 

hydraulic parameters) were held constant so that the effect of the geometric representation could 20 

be quantified.  Further, to assure that the top width results were not affected by variations in the 21 

locations, lengths, and alignment of the cross sections, these properties were also held constant 22 
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between the three models.  Thus, the sole change between the three models is the source of the 1 

geometric data (i.e. cross sections and channel bank locations). 2 

The outputs generated by the HEC-RAS simulations for steady flow conditions include 3 

water surface elevation, velocity, flow area, top width, and flow depth.  This study focused on 4 

analysis of top width, which is a measure of the maximum flood inundation resulting from a 5 

storm event.  Given that there are sixty-nine cross sections in Crooked Creek and the analysis 6 

considered four storm return periods, the total number of top width predictions for each 7 

geometric representation is 276 (sixty-nine multiplied by four).  Flood prediction comparisons 8 

were conducted by calculating the difference, absolute difference, and the Root Mean Square 9 

Error (RMSE) as discussed in a previously.   10 

 11 

 Results and Discussion 12 

The comparison statistics of the top width predictions for hybrid versus survey and 13 

LiDAR versus survey are presented in Table 2.  There are a number of important points that can 14 

be drawn from these statistics.  First, the results show a negative correlation between both 15 

average difference and average absolute difference with respect to return period.  The largest 16 

difference in the top width predictions occurs for the 10-Year event (18% average absolute 17 

difference with a range of 0.1% to 64% for the LiDAR dataset and 15.5% with a range of 0.1% 18 

to 31% for the Hybrid dataset).  The average absolute difference then decrease as the return 19 

period increases, to approximately 12.5% (range of 0.2% to 33% ) for 50 and 100 year events, to 20 

below 10% (range of 0.1% to 31%) for the 500 year event.  Second, average difference is always 21 

positive, indicating that the simulation using the hybrid and LiDAR geometries predicted higher 22 

top width values compared to the simulations using the survey geometry.  Third, the hybrid 23 

dataset consistently outperforms the LiDAR dataset by 1-3% in terms of average absolute 24 
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difference and 2-4% in terms of average difference.   Finally, the RMSE statistic interestingly 1 

does not show a strong relationship with return period, decreasing slightly in magnitude for the 2 

10 to 50 year events, but then increasing slightly for the 100 and 500 year events.  Perhaps the 3 

most important point, however, is that, based on these results, the LiDAR dataset produces top 4 

width estimations that are  approximately 7% greater than predictions based on a surveyed 5 

dataset for large storms (500 year return interval) and over 11% greater for small storms (10 year 6 

return interval). 7 

In order to examine differences in the top width predictions, the LiDAR and survey cross 8 

section plots were visually examined.  The survey and LiDAR cross sections appeared to 9 

generally match, despite some disagreements. Figure 4 presents an example of the top width and 10 

water surface elevation predictions at the two cross sections: one where the surveyed and 11 

LiDAR-derived cross sections generally match, and one where there was significant 12 

disagreement between the two cross-sections.  In the first case where there was a good match 13 

between the survey and LiDAR-based cross sections, the survey-based top width prediction was 14 

110.4 m and the LiDAR-based top width prediction was 120.8 m (a 9.4% difference). Both 15 

models in this first case predicted a maximum water surface elevation of 129.0 m.  In the second 16 

case where there is a poor match between the cross sections, the survey-based top width 17 

prediction was 96.7 m and the LiDAR-based top width prediction was 109 m (a 12.7% 18 

difference).   In this second case, the survey-based model predicted a maximum water surface 19 

elevation of 136.7 while the LiDAR based model predicted a water surface elevation of 136.4 m.   20 

 A closer examination of the prediction differences relieved a pattern where cross 21 

sections directly upstream or downstream of road crossings had the greatest absolute differences.  22 

Comparing the surveyed and LiDAR-derived cross sections for all road crossings revealed that 23 
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the cross sections often match either the upstream or downstream sides of a road crossing, but 1 

never for both.   Figure 5 provides an example of cross section duplication at Bramble Drive 2 

crossing of Crooked Creek.  The solid line in the cross section plot represents the surveyed cross 3 

section and the dashed line the LiDAR-based cross section.  Interestingly, the surveyed cross 4 

sections are identical for both the upstream and downstream cross sections after taking into 5 

account a 0.07 m (0.2 ft) vertical shift.  Thus, it appears that the surveyed cross section 6 

represented in the HEC-RAS model is in fact the upstream cross section, and that this cross 7 

section was duplicated to create the downstream cross-section.  Because of the high cost of 8 

collecting surveyed cross sections and time constraints, we suspect that the modeler assumed 9 

terrain conditions were constant on both sides of a road crossing and duplicated cross sections.   10 

Nonetheless, this analysis highlights one potential use for LiDAR data: not necessarily to create 11 

cross section data themselves, but as a means for validating cross sections within existing HEC-12 

RAS models.   13 

Table 3 presents the percent differences in top width predictions for the cross sections 14 

upstream and downstream of the Bramble Drive crossing.  The differences for the upstream cross 15 

section show a weak correlation with return period.  The differences increase from 16 

approximately 13% for the 10 and 50 year return interval to over 20% for the 100 and 500 year 17 

return interval.  On the other hand, the differences for the downstream cross sections show a 18 

consistent trend with the overall difference pattern, that is a negative correlation with return 19 

period. The LiDAR and hybrid set are under-predicting the top width by 63% for the 10 year 20 

return event,  the difference decreases in magnitude with increasing return interval to 8.5% and 21 

4.9% for the hybrid and LiDAR datasets, respectively for the 500 year .  Based on plots of the 22 

cross sections for the upstream and downstream ends of this cross section, we know that the 23 
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surveyed cross section downstream of the road crossing was incorrectly accounted for in the 1 

model.  At the same time, the road crossings are flow control points within the hydraulics model 2 

where flow is constricted or expanded through the system, complicating the hydraulics and 3 

potentially increasing the differences.  Depending on the culvert or bridge’s capacity, the top 4 

width will change significantly for varying flows.  Therefore, having accurate culvert and cross 5 

section information at road crossings is essential for an accurate top width prediction at those 6 

locations.   7 

Given the observation of duplicate cross sections, the statistics previously calculated for 8 

the entire population of cross sections were recalculated for three subsets of the overall cross 9 

section dataset: (1) a subset that excluded all road crossing cross sections, (2) a subset that 10 

included only road crossings’ upstream cross sections, and (3) a subset that included only road 11 

crossings’ downstream cross sections.  Of the sixty-nine cross sections used in this analysis, 12 

eighteen represent cross sections associated with road crossing.  Table 4 presents the difference 13 

statistics for the population excluding the road crossing cross sections, while Tables 5 and 6 14 

presents the difference statistics for only upstream and downstream cross sections respectively.  15 

The statistics presented in Table 4 indicate that, after excluding road crossings, the difference 16 

between surveyed and LiDAR-based cross sections decreased by 3-5% for average absolute 17 

difference and 1-3% for average difference.  The RMSE statistic, while being generally unrelated 18 

to return period when considering the overall population of cross sections, now shows a negative 19 

correlation with return period after removing the cross sections associated with road crossings.  20 

This reduction in errors is illustrated in Figure 6. Based on the RMSE statistic, top width 21 

predictions were between 4.8 m (15.7 ft) (for a 500 year event) and 8.1 m (26.6 ft) (for a 10 year 22 

event) different when comparing the LiDAR-based data with the surveyed data.  Also for 23 
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LiDAR, the average absolute difference drops to 11% for a low flow event (10 year return 1 

period) and below 5% for a major storm event (500 year return period).  Considering only cross 2 

sections at road crossings (Tables 5 and 6), the data shows that all three difference statistics are 3 

much higher than the differences associated with the entire population and there is no correlation 4 

between the differences and the return period.   5 

 The results were summarized into a Cumulative Distribution Function (CDF) for the 6 

probability that a cross section's error exceeds some value a (Figure 7).  The top graph is the 7 

CDF for the LiDAR absolute difference, it shows that the probability of a cross section having a 8 

difference less than or equal to 10% is 57% for a 10 year event, 67% for a 50 year event, 71% for 9 

a 100 year event, and 75% for a 500 year event.  Excluding the cross sections associated with 10 

road crossings, the probability that the difference at a given cross section is less that 10% 11 

increases from 68% to 80%.  The CDF for the hybrid absolute difference shows the same general 12 

trend, with the probabilities being 54% for a 10 year event, 59% for a 50 year event and 62% for 13 

a 100 year event, and 70% for a 500 year event.  The probabilities increase from 62% to 72% 14 

after removing cross sections associated with road crossings.  Figure 7 also shows that the CDFs 15 

associated with each storm event tend to converge as the probability increases, with the 16 

exception of the 10 year storm event.  For example, there is a 10% chance of having a 50% or 17 

higher difference for a 10 year event, while all other storm events have less than a 5% chance of 18 

exceeding a 50%difference.  This confirms the finding that the difference between LiDAR and 19 

surveyed cross sections is most significant for low flow events.  20 

 21 
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Conclusions 1 

The results of the study show that top width predictions generated using LiDAR-based 2 

cross section geometries generally overestimate predictions generated using survey-based 3 

geometries.  The average difference ranged from 6% for the 500 year event to 12% for the 10 4 

year event, and the average absolute difference ranged from 6% for a 500 year event to 14% for 5 

a 10 year event.  When comparing LiDAR-based cross sections with hybrid-based cross sections, 6 

this study found that the hybrid-based cross sections produced top width predictions more similar 7 

to survey-based cross sections.  The hybrid dataset used LiDAR data for the cross section 8 

elevations and the surveyed data for locating the channel banks.   9 

The study showed greater differences associated with the cross sections directly upstream 10 

and downstream of the road crossings.  Graphical exploration of these cross sections revealed 11 

that only one cross section at each road crossing was actually surveyed, and that surveyed cross 12 

section was duplicated for the other side of the road crossing.  When comparing the duplicated 13 

survey-derived cross sections against LiDAR data, LiDAR often validates the original cross 14 

section, but also suggests that the upstream and downstream sides of the road crossings do not 15 

have similar geometries.  Considering the top width predictions for all design storm events, the 16 

differences in top width predictions for LiDAR versus surveyed cross sections decreases from 17 

11% to 7% after the cross sections associated with road crossings were excluded from the 18 

analysis.  Although greater differences were observed at road crossings, this study was unable to 19 

conclude if these differences are a result of the duplication of cross sections in the surveyed 20 

dataset, or due to increased hydraulic complexity associated with flow expansions and 21 

contractions at road crossings.   22 
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Future work is needed to expand the scope of this study to include additional watersheds 1 

with varying climates, geomorphology, vegetative cover, and stream-order.  This will allow for a 2 

better understanding of how such factors influence LiDAR's ability to measure flood plain and 3 

channel elevations for flood modeling.  Also, this study should be expanded through future 4 

research to model historical flood events in order to quantify true instead of relative errors.  Such 5 

research could be done using a steady-state model where the attempt would be to predict the 6 

maximum water surface elevation and top width, or using a unsteady-state event where the 7 

attempt would be to model the water surface elevation and top width through time. Quantifying 8 

the true errors when compared to a historical event instead of relative errors (or differences) 9 

reported in this study will allow for more definite conclusions as to the value of LiDAR 10 

compared to survey derived cross sections.  11 
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1 

Captions 2 
3 

Table 1.  Summary of the steady flow hydrologic input data 4 

5 

Table 2.  Comparative statistics for the variations in top width predictions using the entire cross 6 

section population 7 

8 

Table 3.  Error in top width predictions for the cross sections immediately upstream and 9 

downstream of Bramble Drive crossing 10 

11 

Table 4.  Comparative statistics for the variations in top width predictions excluding the cross 12 

sections associated with road crossings 13 

14 

Table 5.  Comparative statistics for the variations in top width predictions for the cross sections 15 

upstream of the road crossings 16 

17 

Table 6.  Comparative statistics for the variations in top width predictions for the cross sections 18 

downstream of the road crossings 19 

20 

Figure 1.  Crooked Creek in Durham County, North Carolina 21 

22 

Figure 2.  Crooked Creek cross sections, sub-watersheds and 100 YR flood 23 

delineation 24 

25 

Figure 3.  Illustration of the hybrid data combination 26 

27 

Figure 4. Graphical comparison of the Survey and DEM cross sections. (top: high agreement, 28 

bottom: high disagreement) and the 100 YR flood delineations  29 

30 

Figure 5. Duplicate cross sections used in the original model for the upstream and downstream 31 

cross sections at Bramble Drive crossing. 32 

33 

Figure 6. Error statistics of the top width predictions using the entire cross section population and 34 

the population excluding cross sections associated with road crossing  35 

36 

Figure 7. Cumulative distribution function (CDF) of average absolute error for the LiDAR (top) 37 

and hybrid (bottom) cross section datasets 38 

39 

40 
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1 

2 

Table 1 3 

4 

Basin 

ID 

Sub-

Basin 

Area 

(km
2
) 

Basin 

Area 

(km
2
) 

Final Discharges (m
3
/sec) 

Q10 Q50 Q100 Q500 

CC1 2.75 2.75 34.32 49.36 58.39 81.52 

CC2 0.26 2.98 31.80 50.74 60.03 83.39 

CC4 0.23 5.62 44.00 66.60 82.09 125.90 

CC6 0.57 7.33 45.59 71.50 90.44 139.49 

CC7 3.03 10.36 73.54 106.50 128.95 183.72 

CC8 1.22 11.58 79.68 114.06 137.00 193.40 

CC9 0.88 12.48 78.04 120.60 145.63 205.41 

5 

Table 2 6 

7 

Rainfall 

(mm) 

Return Period 

of Rainfall 

Event 

RMSE (m) 
AVG. Absolute 

Difference (%) 
AVG. Difference (%) 

LiDAR Hybrid LiDAR Hybrid LiDAR Hybrid 

141 10 Years 12.91 11.99 17.97 15.51 11.02 7.07 

178 50 Years 11.33 10.89 12.62 10.86 8.15 4.41 

199 100 Years 12.03 11.36 12.20 10.11 8.61 5.37 

254 500 Years 12.06 11.59 9.46 8.22 6.72 4.03 

8 

9 

Table 3 10 

11 

Rainfall 

(mm) 

Return Period 

of Rainfall 

Event 

Percent Difference in the Inundation 

width at the  Upstream Cross Section 

(16892.8) 

Percent Difference in the Inundation 

width at the  Downstream Cross 

Section (16812.8) 

LiDAR Hybrid LiDAR Hybrid 

141 10 Years 12.57 12.95 -63.50 -63.24 

178 50 Years 12.98 21.66 -24.23 -32.58 

199 100 Years 21.47 21.10 -11.13 -13.05 

254 500 Years 21.47 20.04 8.52 4.93 

12 

13 

14 
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1 

Table 4 2 

3 

Rainfall 

(mm) 

Return 

Period of 

Rainfall 

Event 

RMSE (m) AVG. Absolute Difference (%) AVG. Difference (%) 

LiDAR Hybrid LiDAR Hybrid LiDAR Hybrid 

141 10 Years 9.54 8.11 13.58 10.79 11.73 6.84 

178 50 Years 6.43 5.37 8.49 6.30 7.17 2.85 

199 100 Years 6.82 5.06 8.42 5.81 7.02 2.89 

254 500 Years 5.58 4.79 6.01 4.69 4.13 0.96 

4 

5 

Table 5 6 

7 

Rainfall 

(mm) 

Return 

Period of 

Rainfall 

Event 

RMSE (m) AVG. Absolute Difference (%) AVG. Difference (%) 

LiDAR Hybrid LiDAR Hybrid LiDAR Hybrid 

141 10 Years 19.64 19.61 29.74 29.52 24.55 24.15 

178 50 Years 22.49 22.33 24.56 24.19 19.37 18.70 

199 100 Years 25.08 24.78 25.26 24.32 19.70 22.36 

254 500 Years 20.70 20.57 15.89 16.02 12.55 12.93 

8 

9 

Table 6 10 

11 

Rainfall 

(mm) 

Return 

Period of 

Rainfall 

Event 

RMSE (m) AVG. Absolute Difference (%) AVG. Difference (%) 

LiDAR Hybrid LiDAR Hybrid LiDAR Hybrid 

141 10 Years 19.38 18.55 31.07 28.22 -6.55 -8.75 

178 50 Years 15.60 15.75 24.09 23.30 2.47 -1.01 

199 100 Years 14.71 15.14 20.56 20.28 6.48 2.64 

254 500 Years 22.58 21.85 22.55 20.44 15.56 12.52 
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14 
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Figure 1

http://www.editorialmanager.com/jrnheeng/download.aspx?id=38041&guid=4f483f14-e876-462e-948b-1fd17cbce8b0&scheme=1


CC1

CC2

CC4

CC6

CC7

CC8

CC9

Figure 2

http://www.editorialmanager.com/jrnheeng/download.aspx?id=38042&guid=236a470e-3955-4e08-963e-c015a1c1d070&scheme=1


Hybrid Cross 
Section

Figure 3

http://www.editorialmanager.com/jrnheeng/download.aspx?id=38043&guid=bd4d41d3-24ee-4cd0-a279-5d17177bf698&scheme=1


Figure 4

http://www.editorialmanager.com/jrnheeng/download.aspx?id=38044&guid=68bfbb3c-5576-4344-b904-8310f7588362&scheme=1


Figure 5

http://www.editorialmanager.com/jrnheeng/download.aspx?id=38045&guid=d93e0652-01cb-4e35-b2e4-7092f8738bdd&scheme=1
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Figure 6

http://www.editorialmanager.com/jrnheeng/download.aspx?id=38046&guid=24efa851-53ae-43fe-9fea-c608b8d6823c&scheme=1
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Figure 7

http://www.editorialmanager.com/jrnheeng/download.aspx?id=38047&guid=1438f4b7-c57c-47f0-8aed-f823c0a8d37a&scheme=1



