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ABSTRACT 12 

The successful prediction of civil infrastructure’s deterioration process is crucial for making 13 

optimal maintenance, rehabilitation, and replacement (MR&R) decisions under financial 14 

constraints. The majority of current deterioration models simulate the deterioration process of a 15 

single structure element of civil infrastructure; such models thus ignore the interaction between 16 

dependent elements. However, the interaction between structure elements often plays an 17 

important role in the deterioration of the overall structure. Therefore, the primary objective of 18 

this paper is to address the interaction of these structure elements by developing a method to 19 

simulate the deterioration process of civil infrastructure on a system level. The proposed method 20 

will also provide a measure of the uncertainty of the simulation using Markov Chain Monte 21 

Carlo (MCMC) to estimate the optimal parameters of the Markov Chain and the probability 22 

distribution of those parameters. The Monte Carlo simulation is then used to generate a large 23 
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number of deterioration process samples, which serve as the base of the uncertainty analysis of 24 

the simulation. The model was applied to simulate the deterioration process of a bridge element 25 

subsystem as an example application.  In this example application, the model was calibrated and 26 

evaluated by the bridge inspection record collected in the Commonwealth of Virginia, USA. The 27 

results demonstrate that including the interaction between elements into the model improves the 28 

accuracy of deterioration simulation, while also reducing the uncertainty of the results. 29 

Furthermore, the proposed model is relatively easy to implement within current infrastructure 30 

management systems (IMS) compared to other methods such as neural networks and fuzzy 31 

logical models. 32 

Author keywords: Civil Infrastructure; Deterioration Model; Markov Chain; Markov Chain 33 

Monte Carlo; Structure Element Interaction   34 

 35 

INTRODUCTION 36 

Civil infrastructure deterioration poses a serious challenge to public safety and the 37 

economy worldwide (Wang and Elhag, 2007; Kobayashi, Do, and Han, 2010; Sun and Gu, 2011; 38 

Setunge et. al., 2016). According to the 2017 Infrastructure Report Card provided by the 39 

American Society of Civil Engineers (ASCE), America’s infrastructure is below standard and in 40 

fair to poor condition, especially as many elements approach the end of their service life (ASCE, 41 

2017). A primary challenge in making maintenance, rehabilitation, and replacement (MR&R) 42 

decisions for civil infrastructure is due to financial constraints on infrastructure owners (Agrawal 43 

and Kawaguchi, 2009). To address this challenge, systematic and effective infrastructure 44 

management systems (IMS) are increasingly required to optimize MR&R decisions under 45 

financial constraints (Agrawal and Kawaguchi, 2009; Tran et. al., 2010). The quality of these 46 
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decisions depends on successful prediction of civil infrastructure’s future condition state. Prior 47 

research has developed different types of deterioration models for single structure elements such 48 

as stochastic models, neural network models, and fuzzy logical models. (Micevski et. al., 2002; 49 

Baik et. al., 2006; Kobayashi, Kaito, and Lethanh, 2010; Thomas and Sobanjo, 2016).  50 

Stochastic models, particularly Markovian models, have been extensively used in 51 

predicting the deterioration process of civil infrastructure facilities, e.g., bridge elements 52 

(Wellalage et. al., 2015; Thomas and Sobanjo, 2016), pavements (Kobayashi, Do, and Han., 53 

2010; Thomas and Sobanjo, 2013), and storm-water and wastewater pipes (Micevski et. al., 54 

2002; Tran et. al., 2010). Markovian models are the most commonly used deterioration models in 55 

current IMS, for example, the AASHTOWare Bridge Management System. A primary advantage 56 

of Markovian models is that they are able to capture the physical and intrinsic uncertainty when 57 

predicting the future condition of civil infrastructures. These models are also much easier to 58 

calibrate and apply compared to other, more sophisticated, methods (Thomas and Sobanjo, 59 

2013).  However, stochastic models have several drawbacks as well, namely, they are sensitive 60 

to noisy data and they are based on assumed probability distributions (Tran et. al., 2007; Agrawal 61 

and Kawaguchi, 2009).  62 

Free from these limitations, neural network models (NNM) have been applied to predict 63 

structure deterioration processes in many previous studies (Tran et. al., 2007; Tran et. al., 2009; 64 

Huang, 2010; Son et. al., 2010; Lee et. al. 2014). NNM is capable of analyzing problems that are 65 

poorly defined or too complex to be clearly understood (Tran et. al., 2007; Lee et. al., 2014). 66 

Meanwhile, NNM can rank input factors in order of importance to the deterioration process, 67 

which is useful for identifying the influential factors (Tran et. al., 2007).  68 
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Fuzzy logic theory, which is capable of addressing vague and uncertain problems, is 69 

another widely used method in civil infrastructure deterioration simulation (Kaufmann and 70 

Gupta, 1985; Jeong et. al., 2017). Examples using the fuzzy logic theory include pavement 71 

condition evaluation (Sun and Gu, 2011; Jeong et. al., 2017), buried pipeline deterioration 72 

simulation (Kleiner et. al., 2006; Tagherouit et. al., 2011), and bridge condition evaluation 73 

(Wang and Elhag, 2007; Tarighat and Miyamoto, 2009). However, a primary limitation with 74 

fuzzy-based models is that factors affecting the deterioration rates and inference rules are 75 

identified and constructed based on expert opinion, which can often be subjective (Tran et. al., 76 

2007; Marzouk and Osama, 2017). 77 

For civil infrastructure consisting of multiple elements, the interaction between elements 78 

exists because they are physically interconnected while serving different specific functions 79 

(Sianipar and Adam, 1997). Several methods have been applied to estimate infrastructure 80 

deterioration due to element interactions (Sianipar and Adam, 1997; Morcous et. al., 2002; 81 

Setunge et. al., 2016). Sianipar and Adams (1997) first used fault-tree models to simulate bridge 82 

element deterioration while considering the interactions between elements. Subsequently, fault-83 

tree models have been successfully used by many studies to estimate the deterioration rate or 84 

failure risk of civil infrastructures (LeBeau and Wadia-Fascetti, 2007; Davis-McDaniel et. al., 85 

2013; Setunge et. al., 2016). In these studies, the failure probability or deterioration rate of a 86 

structure is calculated based on the probabilities of a series of base events. For example, in a 87 

deteriorating bridge, the malfunction of expansions joints could be considered as a base event 88 

because the malfunction of expansions joints often accelerates the deterioration of adjacent 89 

structure elements, for example, the bearing system and bridge deck (Sianipar and Adams, 90 

1997). When using fault-tree models, the most essential step is to estimate the probabilities of the 91 



 

5 

occurrence of these base events.  However, there are insufficient observed data to determine 92 

these probabilities in most cases. In addition, the base event occurrences are assumed to be 93 

independent from one another, which may not be correct in all the cases (Sianipar and Adams, 94 

1997).  95 

Another method that is capable of capturing the interaction between structural elements is 96 

the case-based reasoning (CBR) approach. CBR is an artificial intelligence technique that can be 97 

used to estimate the deterioration process of civil infrastructure (Morcous et. al., 2002; Waheed 98 

and Adeli, 2004). The fundamental assumption of CBR is that the deterioration process under the 99 

current situation can be treated as a similar case that happened in the historical record. When 100 

using CBR, first, a case library including the historical records of structure conditions and 101 

influence factors is built; then, the case library is searched to find the most similar stored cases to 102 

the current situation. The condition states of structure elements can be treated as the influence 103 

factors of interrelated structure elements and stored in the case library. Thus, the deterioration 104 

process of structure elements can be simulated while considering the condition states of 105 

interrelated structure elements in the case library. Limitations with the CBR include the 106 

requirement of an adequate size and coverage in the case library and the subjectivity while 107 

determining the weights of different influence factors by expert opinions.  108 

The objective of this paper is to design a method to simulate the deterioration process of 109 

civil infrastructure on system level. In this paper, structure elements that affect the deterioration 110 

processes of other elements are named as protecting elements, and conversely, the elements 111 

being affected are base elements. A Markov Chain-based method initially proposed by Reardon 112 

(2015) was expanded to estimate structure deterioration including the interaction between 113 

structure elements. The basic assumption of Reardon’s method is that the Markov Chain 114 
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transition probabilities of base elements are affected by the condition state of protecting 115 

elements. The original method works for one-to-one element dependencies. In this research, the 116 

method was expanded to capture the interaction between multiple elements. All parameters in the 117 

proposed method are calibrated from inspection records. In this paper, the deterioration process 118 

refers to network-level deterioration, i.e., the deterioration process of a large population of a 119 

specific structure element. The proposed method makes it possible for decision makers to predict 120 

the future condition state of civil infrastructure, which is important for calculating the life-cycle 121 

cost and making effective MR&R decisions. In addition, the proposed method is based on a 122 

stochastic model, which has been shown to provide better extrapolation capabilities than 123 

deterministic models that predict the future condition of bridge element based on many factors, 124 

including age, environment, design characteristics, and traffic conditions (Cavalline et. al., 125 

2015).  To predict the future conditions of civil infrastructures using the complicated methods 126 

mentioned above (i.e., NNM, fuzzy logical models, fault-tree models, and CBR), the prediction 127 

of influence factors is indispensable. However, the prediction of influence factors is usually 128 

unavailable or has large uncertainty. This makes it very hard to integrate these methods into 129 

current IMS. However, this is not a problem for stochastic models, e.g., the proposed model, 130 

because the application of these models is independent from these influence factors. This makes 131 

the proposed model easier to be integrated into current IMS. 132 

A key limitation of prior methods is that the uncertainty of the deterioration process has 133 

not been considered. No matter what method is used, the parameters which defined the 134 

deterioration processes are inevitably affected by uncertainties associated with intrinsic 135 

randomness and imperfections of algorithms (Biondini and Frangopol, 2016). The parameters of 136 

the aforementioned methods became fixed values after model calibrated. This makes the model 137 
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become stationary, i.e., a unique deterioration process would be generated given certain initial 138 

conditions, regardless of the uncertainty of the deterioration process. A solution to this problem 139 

is making full use of the probability distribution of model parameters. In this study, a Bayesian 140 

approach-based Markov Chain Monte Carlo (MCMC) model is utilized to find the optimized 141 

model parameters as well as the probability distribution of parameters. The MCMC model is 142 

widely used in calibrating model parameters and deriving the probability distribution of 143 

parameters (Micevski et. al., 2002; Hong and Prozzi, 2006; Tran et. al., 2010; Wellalage et. al., 144 

2015). To take the uncertainties of parameters into consideration, first a large number of 145 

parameter samples are generated using MCMC and the probability distribution of each parameter 146 

is derived from these samples. Second, randomly select value of parameters according to their 147 

probability distribution, then, feed these parameters to a Monte Carlo model (Rubinstein and 148 

Kroese, 2007) to generate a large number of deterioration process instances. Finally, the 149 

uncertainty of the deterioration process is obtained by analyzing these instances.  150 

A limitation of the current version of the proposed method exists when calculating the 151 

uncertainty of the simulation on system level. The number of the parameters of subordinate 152 

deterioration model (SDM), which is used to represent the interaction between structure 153 

elements, exceeds the limitation of MCMC when the inspection period is not long enough. Thus, 154 

the uncertainty of the interaction between structure elements are not considered in the current 155 

version of the model. In the future study, a SDM with less parameters will be developed to make 156 

sure the uncertainty can be thoroughly considered during the simulation. 157 

 The remainder of the paper is organized as follow. The methodology section provides 158 

details for implementing this method. An example application is then presented applying the 159 

method to simulate the network-level deterioration process of bridges in the Commonwealth of 160 
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Virginia. The paper concludes with a discussion of the benefits and limitations of the approach, 161 

along with possible future research to further advance the approach. 162 

 163 

METHODOLOGY 164 

The proposed method is capable of simulating the deterioration process of a structure 165 

element system while considering the interaction between elements. As an example, the 166 

procedure for estimating the deterioration process of a base element under the influence of a 167 

single protecting element using the proposed method is presented in Fig. 1. In this procedure, the 168 

first step is to calculate the network-level deterioration processes of the base element and 169 

protecting element based on the inspection record of each individual structure element in this 170 

network. This deterioration process is defined as observed deterioration process because it is a 171 

representation of the condition of structure element from inspection record. The deterioration 172 

processes of the base element and protecting element are then used to calibrate the subordinate 173 

deterioration model, which captures the interaction between interrelated structure elements. 174 

Based on the observed deterioration processes of the protecting element, a large number of 175 

Markov Chain parameter samples are generated using the Bayesian MCMC. The probability 176 

distributions of Markov Chain parameters are then derived from these samples. A Monte Carlo 177 

simulation is used to generate an adequate number of deterioration process instances of the 178 

protecting element. With known initial condition states, the same number of deterioration 179 

process instances of base elements are generated corresponding to the deterioration process 180 

instances of the protecting element using the calibrated subordinate deterioration model. The 181 

output is then compare with the observed deterioration process to evaluate the performance of 182 

the proposed method. Details for each step are included in the following subsections. 183 
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184 

Fig. 1. Procedure to simulate base element deterioration process under the influence of single 185 

protecting element 186 

Age-based Element Condition State Distribution 187 

The first step is to calculate the percentage of structural elements’ quantity, for example, 188 

surface area, in each condition state on a network-level from historical inspection records. Most 189 

prior approaches calculate this condition state distribution on a calendar year basis, i.e., annual 190 

time series (Tran et. al., 2010; Wellalage et. al., 2015; Thomas and Sobanjo, 2016). There are 191 

two drawbacks to using this method. First, the time series would be relatively short because the 192 

inspection record yielded by most current IMSs is less than 30 years. Second, age is an important 193 

factor on the element deterioration rate, but it is ignored in this method (Ng and Moses, 1998; 194 
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Thomas and Sobanjo, 2013 and 2016). To address these limitations, the proposed method adopts 195 

a method that the condition state distribution is calculated based on the age of structure elements 196 

when they were inspected. This age-based method for a specific structure element is given by 197 

𝐶𝑆𝑖
𝑗
= 

∑ (𝑞𝑖
𝑗
)𝑚

𝑀
𝑚=1

∑ [∑ (𝑞𝑖
𝑗
)
𝑚

𝑀
𝑚=1 ] 𝑁

𝑖=1

× 100% (1) 

where, 𝐶𝑆𝑖
𝑗

 is the percentage of the overall quantity in condition state 𝑖 at the age of 𝑗,  𝑀 is the 198 

total number of this type of structure element inspected at the age of 𝑗, (𝑞𝑖
𝑗
)𝑚  is the quantity of 199 

element 𝑚 in condition state 𝑖 at the age of 𝑗, and N is the total number of condition states.  200 

Markov Chain 201 

Markov Chain is widely used in current civil infrastructure management systems. A 202 

simplified Markov Chain transition probability matrix for stationary structure element 203 

deterioration is shown in Equation (2). Compared to an ordinary Markov Chain, Equation (2) is 204 

simplified in following two points. First, all values below the main diagonal are zero because the 205 

structure condition cannot be improved without MR&R actions. Second, the probability of an 206 

element decaying by more than one condition state is zero between two successive inspections. 207 

McCalmont (1990) showed that the probability of having more than one condition state jump is 208 

negligible. The transition probability matrix is given by 209 

𝐓𝐏𝐌 =

[
 
 
 
 
𝑃1,1 1 − 𝑃1,1 0 ⋯ 0 0

0 𝑃2,2 1 − 𝑃2,2 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑃𝑁−1,𝑁−1 1 − 𝑃𝑁−1,𝑁−1

0 0 0 ⋯ 0 1 ]
 
 
 
 

 

 

(2) 

 

where 𝐓𝐏𝐌 is the transition probability matrix, 𝑃𝑖,𝑖 is the probability of an element staying in 210 

condition state 𝑖 between two successive inspections, and N is the total number of condition. For 211 



 

11 

a given initial condition state, 𝑪𝑺0, and 𝐓𝐏𝐌, the condition state distribution at age n can be 212 

found using Equation (3): 213 

𝐂𝐒𝑛 = 𝐂𝐒0 × 𝐓𝐏𝐌𝑛 (3) 

 214 

Bayesian Markov Chain Monte Carlo Simulation 215 

Bayesian Approach 216 

From Bayesian theory, the calibration of an unknown parameter vector 𝛉 is an update 217 

from its prior distribution using known information through some probabilistic model (Yuan et. 218 

al., 2009). In this paper, the known information is the observed condition state distribution, 𝐂𝐒 =219 

{𝑐𝑠1, 𝑐𝑠2, … , 𝑐𝑠𝑛} , and the unknown parameter vector 𝛉 equals the main diagonal of Equation 2, 220 

i.e., 221 

𝛉 = [𝑃1,1, 𝑃2,2, ⋯ , 𝑃𝑁−1,𝑁−1, 1]  (4) 

According to Bayes’ theorem, the posterior distribution of model unknown parameters is given 222 

by 223 

𝑃(𝛉|𝐂𝐒) =
𝐿(𝐂𝐒|𝛉)𝑃(𝛉)

∫𝑃(𝐂𝐒|𝛉)𝑃(𝛉)𝑑𝛉
=

𝐿(𝐂𝐒|𝛉)𝑃(𝛉)

𝑃(𝐂𝐒)
 (5) 

where 𝑃(𝛉|𝐂𝐒) is the posterior distribution of 𝛉 given observed data 𝐂𝐒, 𝐿(𝐂𝐒|𝛉) is the 224 

likelihood to observed 𝐂𝐒 given unknown parameters 𝛉, 𝑃(𝛉) is a prior probability distribution 225 

representing the initial beliefs about the true value of 𝛉, and 𝑃(𝐂𝐒) is the probability distribution 226 

of 𝐂𝐒. Because 𝑃(𝐂𝐒) is independent of 𝛉, the posterior distribution is proportional to the 227 

product of prior distribution density and the likelihood function as given by 228 

𝑃(𝛉|𝐂𝐒) ∝ 𝑃(𝛉)𝐿(𝐂𝐒|𝛉) (6) 
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Because there is no available knowledge about the prior distribution of these Markov 229 

Chain parameters, the prior distribution 𝑃(𝛉) was chosen as a uniform distribution in interval [0, 230 

1]. As a result, the posterior distribution 𝑃(𝛉|𝐂𝐒) is proportional to the likelihood function 231 

𝐿(𝐂𝐒|𝛉).  232 

With a randomly selected 𝛉 in the space [0, 1] and a known initial condition state 233 

distribution, the deterioration process can be calculated using a Markov Chain simulation. Then, 234 

for each specific element age, the error between the simulation and observation can be computed 235 

by using a Half-Normal Distribution method (Bland, 2005), which treats the difference between 236 

the simulation and observation as a probability. The probability that the estimated condition state 237 

𝑖 at year 𝑡, (𝐶𝑆′)𝑖
𝑡, is equal the observation, 𝐶𝑆𝑖

𝑡,  is expressed by the probability density function 238 

(PDF) of a Half-Normal Distribution, as follows 239 

𝑃(𝛉)𝑖
𝑡 =

√2

σ√π
𝑒𝑥𝑝 (−

[(𝐶𝑆′)𝑖
𝑡 − 𝐶𝑆𝑖

𝑡]2

2σ2
) (7) 

where 𝑃(𝛉)𝑖
𝑡 is the probability that the estimation of condition state 𝑖 at age 𝑡 is accurate by 240 

using a randomly selected parameter vector 𝛉, and 𝜎 is a scale parameter. The value of 𝜎 would 241 

not significantly affect the result of the MCMC simulation, but it influences the stability of the 242 

simulation. Thus, a sensitivity test needs to be done to choose an appropriate 𝜎. A sensitivity test 243 

for the example application in this paper indicates that the model for this specific case is stable 244 

while choosing the 𝜎 value in the interval [0.1, 0.3].  According to joint probability theory, the 245 

likelihood function can be calculated by 246 

𝐿(𝐂𝐒|𝛉) = ∏∏𝑃(𝛉)𝑖
𝑡

𝑁

𝑖=1

𝑇

𝑡=1

 (8) 
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where T is the maximum element age in the study period and N is the number of condition states 247 

in the inspection system.  248 

Markov Chain Monte Carlo Simulation 249 

The Metropolis-Hastings (MH) algorithm is used to generate samples of Markov Chain 250 

parameters. The MH algorithm is one of the most established and commonly used MCMC 251 

algorithms (Green and Worden, 2015). Throughout the following text, a target distribution is 252 

defined by Equation (9).  253 

𝜋(𝛉) = 𝑃(𝛉)𝐿(𝐂𝐒|𝛉) (9) 

At each iteration, a candidate sample 𝛉′ is randomly selected from a uniform distribution in 254 

space [0, 1]. Then, the deterioration process is simulated with a known initial condition state. 255 

Given a condition state observation, 𝐂𝐒, the target distribution π(𝛉′) can be calculated. This 256 

target distribution π(𝛉′) is then subject to an acceptance test with target distribution π(𝛉𝑖) for 257 

current Markov Chain parameters vector 𝛉𝑖. This acceptance test is based on Equation (10). 258 

ρ = min {1,
π(𝛉′)

π(𝛉𝑖)
} (10) 

If 𝜌 = 1, the candidate sample 𝛉′ is accepted and set 𝛉𝑖+1 = 𝛉′; otherwise, set 𝛉𝑖+1 = 𝛉𝑖. The 259 

initial starting value for the MH algorithm was randomly selected from a uniform distribution in 260 

space [0, 1]. After the MH algorithm iterates a large number of times and a certain number of 261 

“warm up” iterations at the beginning are ignored, the outputs can be used to derive the 262 

probability distribution of Markov Chain parameters. 263 

Monte Carlo Simulation 264 

To capture the uncertainty of the deterioration process, the Monte Carlo simulation is 265 

used to generate a large number of deterioration process instances based on the estimated 266 

probability distribution of Markov Chain parameters.  267 
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The Monte Carlo simulation in this paper consists of three basic steps.  268 

Step1. Randomly select a value for each 𝑃𝑖,𝑖 in Equation 2 according to its estimated 269 

probability distribution, then generate the TPM. 270 

Step 2. Calculate the Markov Chain deterioration process start from the known initial 271 

condition state according to bridge element inspection. 272 

Step 3. Store the simulated deterioration process, then repeat steps 1-2 a large number of 273 

times. 274 

Element Deterioration on a System Level 275 

To consider the interaction between structure elements, a method developed by Reardon 276 

(2015) is used in this paper. Their method is capable of capturing the interrelationship between 277 

two elements and is extended in this research to calculate the deterioration process of a base 278 

element under the influence of multiple protecting elements. This method can be applied to 279 

simulate the deterioration process of a structure element system. 280 

Subordinate Deterioration Model 281 

 The subordinate deterioration model, developed by Reardon (2015), is used to calculate 282 

the TPM of the base element under the influence of a protecting element. This is a Markov 283 

Chain-based model based on the simplified form of TPM in Equation 2. This model assumes 284 

that the transition probability of the base element has a linear relationship with the percentage of 285 

the protecting element’s quantity, for example, surface area, in each condition state. A parameter 286 

matrix is introduced into this model to compute the TPM of the base element. The main diagonal 287 

of the base element’s TPM is calculated by 288 
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𝐂𝐓𝐏 =

[
 
 
 
 

𝐶𝑃1,1

𝐶𝑃2,2

⋮
𝐶𝑃𝑛−1,𝑛−1

1 ]
 
 
 
 

= [𝑐𝑠1
∗ 𝑐𝑠2

∗ ⋯ 𝑐𝑠𝑛
∗]

[
 
 
 
𝑃𝑀1,1 𝑃𝑀1,2 ⋯ 𝑃𝑀1,𝑛−1 1

𝑃𝑀2,1 𝑃𝑀2,2 ⋯ 𝑃𝑀2,𝑛−1 1

⋮ ⋮ ⋱ ⋮ 1
𝑃𝑀𝑚,1 𝑃𝑀𝑚,2 ⋯ 𝑃𝑀𝑚,𝑛−1 1]

 
 
 
 (11) 

𝐸. 𝑔. ∶ 𝐶𝑃𝑖,𝑖 = 𝑐𝑠1
∗ ∙ 𝑃𝑀1,𝑖 + 𝑐𝑠2

∗ ∙ 𝑃𝑀2,𝑖 + ⋯+ 𝑐𝑠𝑚
∗ ∙ 𝑃𝑀𝑚,𝑖  

where CTP equals to the main diagonal of the conditional transition probability matrix of the 289 

base element, 𝐶𝑃𝑖,𝑖 is the conditional probabilities of staying in condition state 𝑖 during one time 290 

step, 𝑐𝑠𝑖
∗ is the percentage of protecting element in condition state 𝑖, 𝑃𝑀𝑖,𝑗 is a component of the 291 

parameter matrix relates the CTP of base element and the condition state of protecting element, 292 

and “m” is the total number of condition states.  293 

 The parameter matrix is driven from inspection records of the base element and 294 

protecting element. This is done as follows. First, each unknown in the parameter matrix is 295 

assigned a random value in the space [0, 1]. Second, the corresponding CTP is calculated using 296 

Equation 11. Third, the deterioration process of the base element is calculated using Markov 297 

Chain. Finally, the Solver tool in the Microsoft Excel is used to find the optimized parameters 298 

matrix that minimizes the root-mean-square error (RMSE) between the estimated deterioration 299 

process and the observation.  300 

Deterioration on System Level  301 

The method to simulate the deterioration process of a civil infrastructure element under 302 

the influence of multiple elements is explained as follows. Start from a simple case that one base 303 

element is affected by M protecting elements. Define an array of parameters [λ1, λ2, ⋯ , λ𝑀] as 304 

the influence weight of each of these protecting elements, respectively. The conditional transition 305 

probability of the base element is given by 306 

𝐂𝐓𝐏 = λ1 ∙ 𝐂𝐒1
∗𝐏𝐌1 + ⋯+ λ𝑀 ∙ 𝐂𝐒𝑀

∗ 𝐏𝐌𝑀 (12) 
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where CTP is the main diagonal of the conditional transition probability matrix of the base 307 

element, 𝐂𝐒𝑖
∗ is the condition state distribution of protecting element 𝑖, and 𝐏𝐌𝑖 is the parameter 308 

matrix corresponding to protecting element 𝑖. The procedure for calculating the conditional TPM 309 

of the base element is done by the following steps. 310 

Step 1. Separately compute the optimized parameter matrix, PM, corresponding to each 311 

pair of protecting element and base element using the method in the previous 312 

subsection. 313 

Step 2.  Assign each 𝜆 a random value in [0, 1], and calculate the corresponding CTP and 314 

TPM of the base element. 315 

Step 3. Calculate the deterioration process of the base element using Equation 3. 316 

Step 4. Find the optimized combination of [𝜆1, 𝜆2, ⋯ , 𝜆𝑀] that minimizes the RMSE 317 

between the estimated and observed deterioration process. 318 

The method is able to be applied to calculate the deterioration process of a structure 319 

element system. Basically, the deterioration process of the system is calculated from bottom to 320 

top, i.e., the deterioration process of protecting elements would be computed at first followed by 321 

the base elements. Then, the calculated base elements become the protecting elements to 322 

simulate the deterioration processes of base elements on upper layer. This procedure will be 323 

further explained in the Example Application section. In this method, the feedback from base 324 

element is ignored. For instance, joints on a bridge structure affect the deterioration process of 325 

moveable bearings, and this relationship can be captured by the proposed method. But the 326 

feedback from moveable bearings affecting joints on bridge structures would not be counted by 327 

this method in its current form. 328 

EXAMPLE APPLICATION 329 
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Bridges are vital components of surface transportation infrastructure. Bridges consist of 330 

many structure elements that are physically interconnected but have different specific functions 331 

(Sianipar and Adams, 1997). The interaction between bridge elements is important when 332 

modeling the deterioration processes. This interaction between bridge elements can be captured 333 

by the proposed method. To demonstrate this point, the method was applied to a set of 334 

interdependent bridge elements using data from the bridge inspection database provided by the 335 

Virginia Department of Transportation (VDOT).  336 

Data Source 337 

The VDOT bridge inspection database contains bridge element inspection records of 338 

22,922 bridges and large culverts in Virginia from 1995 to 2016. According to this database, 110 339 

bridge elements are inspected about every 2 years. The majority of Virginia’s bridges were 340 

designed with an anticipated service life of 50 years, and about 64.0% of the inventory is more 341 

than 40 years old (VDOT, 2016 and 2017).  Currently, the Pontis Bridge Management System 342 

(BMS) is used to manage VDOT’s bridge inspection records. The Pontis BMS is a database 343 

system containing bridge element inspection records, traffic needs, accident data, maintenance 344 

records, improvement and replacement costs, etc. (VDOT, 2007). In the Pontis BMS, each 345 

bridge element is rated according to its condition state. There are two different rating systems: 346 

one that rates condtion using number 1 to 3, where 1 is the best condition and 3 is the worst 347 

condition, another that rates condition using number 1 to 5, where 1 is the best condition and 5 is 348 

the worst condition.  (VDOT, 2007). Unlike the National Bridge Inventory (NBI), which assigns 349 

an overall rating to indicate the general condition of the element, the Pontis BMS rates each 350 

bridge element according to its various portions, such that, if a bridge element has multiple 351 

portions that are in different condtion states, each portion of the element will be assigned the 352 
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appropriate condtion rating. For example, if 80% of the total surface area of a concrete deck is in 353 

condition state 1 and 20% is in condition state 2, the ratio 0.8 and 0.2 are assigned to condition 354 

states 1 and 2, respectively. 355 

Study Case Description 356 

The proposed method is applied to a subset of a bridge element system (Fig. 2) and  the 357 

results are compared with results from approaches that do not consider element interactions. This 358 

system consists of five major structural elements from the bridge superstructure and bearing 359 

systems. Basic information about these elements are provided in Table 1. Detailed information 360 

about these elements can be found in the Element Data Collection Manual (VDOT, 2007). Fig. 2 361 

shows the interdependencies between the bridge elements being studied. The relationship 362 

between each pair of interdependent elements is represented by an arrow, where the tail of an 363 

arrow is linked to a protecting element and the head of the arrow is pointing to the base element. 364 

For example, the arrow connecting Element 301 and Element 107 indicates that Element 301 is 365 

the protecting element of Element 107. In this system, the deterioration rate of movable bearings 366 

(Element 311) are affected by the conditon state of the joint seal (Element 301). This is because 367 

movable bearings are usually installed below joints and their deterioration rate can be accelarated 368 

by leakage of salt and polluted water caused by malfunctioning joints. The deterioration rate of 369 

steel open girders are also influenced by the joint seal because leaking deck expansion joints 370 

allow salt water seepage and, subsequently, corrode the girder ends. Also, the mulfunction of 371 

fixed or movable bearings by corrosion resists horizontal or vertical movement and thus 372 

accelerates the deterioration of steel open girders. As one of the main components of the deck-373 

supporting system, girders have significant influence on the deterioration of deck system. 374 

Therefore, the girder-deck relationship is analyzed in this study.  375 
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In the inspection database, there are 476 bridges that contain the 5 elements being studied 376 

and a total of 3270 inspection records for each element in the network from 1995 to 2016. The 377 

proposed model is calibrated and tested by using the bridge element inspection from all the 476 378 

bridges. The bridge population was randomly separated into two subsets: a training bridge set 379 

and a testing bridge set. The training bridge set contains 333 bridges (70%), and the testing 380 

bridge set includes 143 bridges (30%). All parameters in the proposed model are calibrated from 381 

the inspection records of the training bridge set. The inspection records of the testing bridge set 382 

are then used to evaluate the performance of the proposed model.  383 

Table 1. Bridge Elements Studied and the Number of Condition States 384 

Element Description No. of Condition States 

12 Concrete Deck - Bare - with Uncoated Reinforcement 5 

107 Steel Open Girder - Coated 5 

301 Pourable Joint Seal 3 

311 Moveable Bearing 3 

313 Fixed Bearing 3 

 385 

 386 

Fig. 2. Bridge element system consists of major structural components of bridge superstructure 387 

and bearing system 388 
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In this study, the condition state distributions of bridge elements are calculated based on 389 

their age when they were inspected. The proposed method is developed to simulate the 390 

deterioration process of infrastructure on a network-level. When there are too few bridges 391 

inspected at a specific age, the calculated network-level condition state distribution cannot 392 

represent the overall condition state of the bridge network at that age. Take the condition state of 393 

Element 107 on the training bridge set as an example (Fig. 3). In Fig. 3(a), a small number of 394 

bridges were inspected when they were younger than 16 years old or older than 46 years old. 395 

This results in the unstable condition state distribution when Elements 107 were at that period, 396 

which can be found in Fig. 3(b). The Element 107 between ages 16 to 46 has a relatively large 397 

bridge population inspected. At the same time, a stable deterioration process was observed. The 398 

deterioration processes of other elements are provided as the Supplemental Data to this paper. 399 

Similar to Element 107, the deterioration process of Element 301 is stable between age 16 to 46 400 

(Fig. S1 in the Supplemental Data). In Figs. S2 and S3, the Element 311 and 313 have stable 401 

deterioration processes from age 16 to age 49. In Fig. S4, the deterioration process of Element 12 402 

is stable from age 16 to age 48. Thus, to ensure the deterioration processes are stable for all 403 

elements considered in this study, the deterioration processes from age 16 to 47 are selected for 404 

the example application. 405 

 406 
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 407 

Fig. 3. Element 107 in the training bridge set (a) frequency analysis of bridge number on each 408 

age and (b) condition state distribution 409 

Results and Discussion 410 

Markov Chain Parameters Calibrated Using Bayesian MCMC 411 

Starting with a set of initial Markov Chain parameters randomly selected from a uniform 412 

distribution in space [0,1], the MCMC simulation with MH algorithm was performed with 413 

80,000 iterations for each bridge element. Trace plots with 50,000 iterations after 30,000 warm-414 

up runs are provided for each bridge element. In this section, the MCMC simulations of Element 415 

107 and 12 are provided as an example.  416 

Element 107 417 

The calibration of Markov Chain parameters of Element 107 is shown in Fig. 4(a). It can 418 

be found that the mean of the 𝑃1,1, 𝑃2,2, and 𝑃3,3 simulation converges at a constant value. The 419 

simulation of 𝑃1,1, 𝑃2,2, and 𝑃3,3 can be used to derive the probability distributions of 𝑃1,1, 𝑃2,2, 420 

and 𝑃3,3 (Fig. 4(b)). However, the simulation of 𝑃4,4, which affects the calculation of the 𝐶𝑆4 and 421 

𝐶𝑆5, does not converge at any constant value. This makes it impossible to compute the optimized 422 

value and possibility distribution of 𝑃4,4 using the Bayesian MCMC method. During the 423 
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simulation period, a small percentage (about 2.5% on average) of Element 107 is observed on 424 

𝐶𝑆4 and the same percentage is on 𝐶𝑆5. Meanwhile, the initial value of 𝐶𝑆4 and 𝐶𝑆5 usually 425 

equal zero when the element is on a good condition at the beginning of the simulation period. 426 

Thus, the simulation of 𝐶𝑆4 and 𝐶𝑆5 would be very close to zero regardless of the value of 𝑃4,4 if 427 

the simulation period is relative short. This means the simulation of 𝐶𝑆4 and 𝐶𝑆5 is insensitive to 428 

the value of 𝑃4,4. Therefore, under this situation, 𝑃4,4 cannot be calibrated by using Bayesian 429 

MCMC when a very small percentage of an element’s quantity are on 𝐶𝑆4 and 𝐶𝑆5. In the 430 

simulation, a default value was assigned to 𝑃4,4 since the result would not be significantly 431 

affected by the value of 𝑃4,4.  432 

433 

Fig. 4. (a) Markov Chain Monte Carlo (MCMC) simulation trace plot and (b) parameter 434 

probability distribution analyses of element 107 435 
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Fig. 4(b) shows the probability distribution analyses of Markov Chain transition 436 

probabilities. It can be seen that the simulations have distributions with nonzero skewness, 437 

especially 𝑃3,3. Also, because the transition probabilities are defined in an interval of finite 438 

length ([0, 1]), the posterior distribution of 𝑇𝑃𝑠 are assumed to be a Beta Distribution (Gupta and 439 

Nadarajap, 2004) given by 440 

𝑓(𝑥; 𝛼, 𝛽) =
1

𝐵(𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1 (2) 

where 𝛼 and 𝛽 are two positive shape parameters and 𝐵 is a normalization constant determined 441 

by 𝛼 and 𝛽 to ensure that the total probability integrates to 1. The Kolmogorov-Smirnov test (K-442 

S test) (Kanji, 2006) is performed to validate the assumption that 𝑇𝑃𝑠 follows a beta distribution. 443 

The results of the K-S test are provided in Table 2. The h value is the hypothesis test result, 444 

returned as a logical value. When h equals 1, the K-S test rejects the null hypothesis at the 0.05 445 

significance level. Otherwise, the K-S test fails to reject the null hypothesis at the 0.05 446 

significance level. The p value is the probability of observing a test statistic as extreme as the 447 

observed value under the null hypothesis. The cv value is the critical value at the 0.05 448 

significance level. If p is smaller than cv, h would equal 1 and vice versa. In Table 2, all h values 449 

are equal to 1, which means that all 𝑇𝑃𝑠 pass the K-S test and follow a beta distribution. The 450 

value of shape parameters 𝛼 and 𝛽 for each 𝑇𝑃 are included in Table 2. The “Mean” column is 451 

the average of 𝑇𝑃s’ simulation in Fig. 4.  The “Optimal” column contains the optimal 𝑇𝑃s, 452 

which minimize the RMSE of the condition state simulation. The optimal 𝑇𝑃s are computed by 453 

using the Solver tool in Microsoft Excel. It can be seen that there is a very small difference 454 

between the mean of 𝑇𝑃 simulations and the optimal values. The optimal value of 𝑃4,4 in the 455 

“Optimal column” is assigned as the default value of 𝑃4,4, which will be used to simulate the 456 

deterioration process of Element 107 along with the calibrated 𝑃1,1, 𝑃2,2, and 𝑃3,3. 457 
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Table 2. Kolmogorov-Smirnov (K-S) Test and Probability Distribution of Element 107’s 458 

Transition Probabilities 459 

 Transition 

Probabilities 
Mean 

K-S Test   Beta Distribution Parameters 
Optimal 

h p cv   α β 

P11 0.9589 1 ~0 0.0061   1597.2 68.5 0.9583 

P22 0.9519 1 ~0 0.0061  492.1 24.9 0.9518 

P33 0.9659 1 ~0 0.0061  101.5 3.6 0.9660 

P44 *0.8892             0.8892 

Note: * is the default value of transition probability 460 

Element 12 461 

The trace plots and probability distribution analyses of Element 12’s transition probabilities are 462 

shown in Fig. 5. The mean of 𝑃1,1, 𝑃2,2, and 𝑃3,3 converge at a constant value, but the mean of 463 

𝑃4,4 does not converge. The K-S test is applied to verify the assumption that the transition 464 

probabilities follows a beta distribution. The results are provided in Table 3. All h values are 465 

equal to 1, which means 𝑃1,1, 𝑃2,2, and 𝑃3,3 pass the K-S test at the 0.05 significance level. The 466 

shape parameters of beta distribution are included in Table 3. Table 3 also contains the mean of 467 

the 𝑇𝑃 simulated by Bayesian MCMC and the optimal 𝑇𝑃 values computed by using Excel 468 

Solver. Similar to Element 107, the 𝑃4,4 value in the “Optimal” column is assigned as the default 469 

value of 𝑃4,4. 470 
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471 

Fig. 5. (a) MCMC simulation trace plot and (b) parameter probability distribution analyses of 472 

Element 12 473 

Table 3. K-S Test and Probability Distribution of Element 12’s Transition Probabilities 474 

 Transition 

Probabilities 
Mean 

K-S Test   Beta Distribution Parameters 
Optimal 

h p cv   α β 

P11 0.9445 1 ~0 0.0061   1625.5 95.5 0.9428 

P22 0.9785 1 ~0 0.0061  
1130.7 24.9 0.9774 

P33 0.9178 1 ~0 0.0061  
63.1 5.7 0.9208 

P44 *0.8816             0.8816 

Note: * is the default value of transition probability 475 

 476 

Deterioration Process Simulation on a Single Element Level 477 

Starting with the known initial condition state, the deterioration process of a single bridge 478 

element was simulated by using the Monte Carlo model. The Monte Carlo model iterated 5,000 479 

times for each bridge element. On each iteration, the transition probabilities are randomly 480 



 

26 

selected from the beta distributions derived in the previous subsections. As an example, the 481 

results of Element 107 and 12 are provided and discussed below. 482 

Element 107 483 

The Monte Carlo simulation of Element 107 is presented in Fig. 6. The solid lines 484 

represent the mean of the simulation at each age, and the dashed lines are the observed 485 

deterioration processes. It can be seen that the mean of the simulations are consistent with the 486 

observed deterioration processes, especially in the period when the element is older than age 20. 487 

The gray bands represent the space between the maximum and minmum percentage of bridge 488 

element quantity at each age. As a whole, the observed deterioration process is covered by the 489 

gray bands except condition state 1 and 2 at the beginning of the study period. These spaces 490 

represent the uncertainty of the deterioration process simulation, which is important information 491 

for decision makers. The width of these bands grows with the increase of the bridge element age. 492 

This means that the uncertainty of the model is growing with the increase of the length of the 493 

simulation period.  494 
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 495 

Fig. 6. Element 107 deterioration process simulation on a single element level 496 

Element 12 497 

The Monte Carlo simulation of Element 12 is presented in Fig. 7. The mean of the 498 

simulation is consistent with the observed deterioration process for each condition state. In 499 

particular, the mean of the simulations of condition states 3, 4, and 5 closely align with the 500 

observations. The observed deterioration processes of condition states 1 and 2 are bouncing 501 

around the mean of the simulations at the beginning of the study period. In the later period, the 502 

mean of the simulations is well-matched with the observations, especially after age 25. Similar to 503 

the simulation of Element 107, the gray bands represent the uncertainty of the deterioration 504 

process simulations. The condition state observations are generally covered by gray bands.  505 
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 506 

Fig. 7. Element 12 deterioration process simulation on a single element level 507 

Deterioration Process Simulation on a System Level 508 

The deterioration process of the bridge element system in this example application is 509 

simulated using the proposed method on a system level. The procedure in this case is 510 

Step 1. Generate 5,000 deterioration process instances for Element 301 and 313 using the 511 

proposed method on a single element level. 512 

Step 2. Use the subordinate deterioration model to compute 5,000 deterioration process 513 

instances for Element 311 corresponding to the instances of Element 301. 514 

Step 3. Generate 5,000 deterioration process instances of Element 107 based on the 515 

instances of Element 301, 311, and 313 using the subordinate deterioration model. 516 
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Step 4. Calculate 5,000 possible deterioration process instances of Element 12 based on 517 

the simulation of Element 107. 518 

 In this process, 5,000 deterioration process instances of this bridge element system were 519 

generated. The results of Elements 107 and 12 are provided and compared with the observed 520 

deterioration processes in Fig. 8. There are two major differences between the simulation on the 521 

single element level and the system level. First, the mean of the simulations on the system level 522 

is slightly closer to the observed deterioration processes in general, although this is not obvious 523 

in Fig. 8. Later in this section, a comparison between the RMSE of simulations on the single 524 

element level and system level are provided to demonstrate this point.  Second, the improvement 525 

of the model’s performance is more significant at the end of the simulation period, which means 526 

that the model on the system level is more reliable in simulating the long term structure 527 

deterioration process.  528 
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529 

Fig. 8. Deterioration process simulation on a system level (a) Element 107 and (b) Element 12 530 

 The RMSE between the mean of the simulation and the observations was calculated to 531 

evaluate the accurary of the proposed method. The RMSE is given by 532 
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𝑅𝑀𝑆𝐸 = √∑ (𝐶�̂�𝑖 − 𝐶𝑆𝑖)
2𝑁

𝑖=1

𝑁
 (9) 

where 𝐶�̂�𝑖 is the mean of the condition state simulation at age 𝑖, 𝐶𝑆𝑖 is the observed condition 533 

state at age 𝑖, and N is the length of the simulation period. The RMSEs for each condition state 534 

are calculated for the simulation on both the single element level and the system level. The 535 

results are shown in Table 4. For Element 107, the RMSEs for both single element and bridge 536 

element system are less than 0.07, which means both simulations fit well with the observations. 537 

Similarly, for Element 12, the results for both situations are fairly accurate compared to the 538 

observation because of the small RMSE (less than 0.09). The RMSE for simulations on a system 539 

level are smaller than that on a single element level except for the condition state 4 of Element 540 

107. The simulation of condition states 3 and 5 of the Element 107 improved significantly by 541 

using the proposed method on the system level, while only a slight improvement resulted for the 542 

condition state 1. For condition states 2 and 4 of Element 107, the difference between the RMSEs 543 

on both situations was very small. The RMSE for each condition state of Element 12 was smaller 544 

on the system level compared to that on the single element level. 545 

 546 

Table 4. RMSE Between the Bridge Element Deterioration Process Simulations and 547 

Observations on Both the Single Element and System Level for the Training Bridge Set 548 

Condition 

States 

Element 107  Element 12 

Single System Diff (%)  Single System Diff (%) 

CS 1 0.0592 0.0534 9.6  0.0829 0.0798 3.7 

CS 2 0.0464 0.0462 0.2  0.0796 0.0766 3.8 

CS 3 0.0315 0.0254 19.4  0.0275 0.0254 7.6 

CS 4 0.0065 0.0067 -4.6  0.0138 0.0132 4.3 

CS 5 0.0131 0.0088 33.6  0.0190 0.0165 13.2 

Note: 𝐷𝑖𝑓𝑓 = (𝑅𝑀𝑆𝐸𝑆𝑖𝑛𝑔𝑙𝑒 − 𝑅𝑀𝑆𝐸𝑆𝑦𝑠𝑡𝑒𝑚)/𝑅𝑀𝑆𝐸𝑆𝑖𝑛𝑔𝑙𝑒 × 100% 549 
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 550 

Model Evaluation 551 

The inspection record of the testing bridge set is used to evaluate the performance of the 552 

proposed model. Starting with known initial condition state of the testing bridge set, the 553 

proposed method is performed over the entire study period. The result is compared with the 554 

observation of the testing bridge set. Here, same as the previous sections, the results of Elements 555 

12 and 107 are provided as a demonstration.   556 

Fig. 9 and 10 show the comparison between the condition state simulations and 557 

observations for Elements 107 and 12, respectively. For the deterioration process of Element 107 558 

simulated on the single element level, the simulation captured the overall trend of the actual 559 

deterioration process. The mean of condition state 2 simulation is slightly overestimated, and the 560 

mean of condition states 1, 4, and 5 simulation are slightly underestimated. For Element 107 on 561 

system level, the mean of the simulation is a better match with the observation, esepcially, after 562 

age 15. For Element 12, the simulations for both situations have a good fit with the observed 563 

condition state. The accuracy of Element 12 condition state simulation on the system level is 564 

higher than that on the single element.  565 
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566 

Fig. 9. Element 107 deterioration process simulations versus observations for testing bridge set 567 

on (a) single element level and (b) system level 568 
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569 

Fig. 10. Element 12 deterioration process simulation versus observation for testing bridge set on 570 

(a) single element level and (b) system level 571 
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 The RMSE between the deterioration process simulations and observations was calculated 572 

for Elements 107 and 12 on both the single element level and system level (Table 5). For both 573 

elements, the RMSE on the system level simulation are generally smaller than that on the single 574 

element level, except for the condition state 3 of Element 107 and the condition state 2 of 575 

Element 12. For Element 107, the accurary of the simulation of condition states 1, 2, 4, and 5 576 

have a significant improvement when using the proposed method on the system level. For 577 

condition state 3 of Element 107, the difference between RMSE on the single element level and 578 

the system level are is almost negligible. The condition states 1, 3, 4, and 5 simulation of 579 

Element 12 have a slightly higher accurary when using the proposed method on the system level. 580 

Table 5. RMSE Between the Bridge Element Deterioration Process Simulations and 581 

Observations on Both the Single Element and System Level for the Testing Bridge Set 582 

Condition 

States 

Element 107  Element 12 

Single System Diff (%)  Single System Diff (%) 

CS 1 0.1215 0.1087 10.5  0.1185 0.1129 4.7 

CS 2 0.1195 0.0951 20.4 
 0.1381 0.1410 -2.1 

CS 3 0.0399 0.0402 -0.8 
 0.0905 0.0855 5.5 

CS 4 0.0386 0.0251 35.0 
 0.0351 0.0332 5.4 

CS 5 0.0324 0.0215 33.6 
 0.0366 0.0343 6.3 

Note: 𝐷𝑖𝑓𝑓 = (𝑅𝑀𝑆𝐸𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 − 𝑅𝑀𝑆𝐸𝑆𝑦𝑠𝑡𝑒𝑚)/𝑅𝑀𝑆𝐸𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 100% 583 

 584 

CONCLUSIONS 585 

The primary objective of this research is to develop a method for simulating the 586 

deterioration process of civil infrastructure on a system level while also analyzing the 587 

uncertainties of the simulation. The approach uses a method based on the age of the 588 

infrastructure elements to calculate the condition state distribution. Bayesian MCMC is used to 589 

drive the probability distributions of the Markov Chain transition probabilities of elements being 590 
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studied. The Monte Carlo simulation is then applied to generate a large number of deterioration 591 

process instances. The uncertainties of the deterioration process simulations are analyzed based 592 

on these instances. A Markov Chain-based method is modified to calculate the deterioration 593 

process that considers the interaction between multiple elements. As a demonstration, the method 594 

is applied to a bridge element system from the VDOT bridge inspection database. In the example 595 

application, the deterioration processes on the single bridge element level and the system level 596 

were simulated and compared.  597 

The main benefit of the proposed method is that it is capable of simulating the 598 

deterioration processes of civil infrastructure on a system level while also providing a measure of 599 

the uncertainty of the predictions. In addition, the proposed method is more straightforward to 600 

implement within current IMS compared to other methods, such as neural networks and case-601 

based reasoning models. This is because the proposed method is built on a stochastic model, 602 

which has been shown to provide better extrapolation capabilities and has been widely used in 603 

current IMS to make effective and efficient MR&R strategies. All parameters used in this 604 

method are calibrated using historical inspection records, an approach which avoids the 605 

subjectivity of assigning these parameters based on engineering judgment. Furthermore, the 606 

uncertainty of deterioration process, which is usually ignored by previous models, is considered 607 

in the proposed method. An uncertainty analysis of the deterioration process provides vital 608 

information upon which decision makers to make effective MR&R judgements. 609 

With the interaction between structure elements being considered, the proposed method 610 

performs better at estimating deterioration processes compared to methods that ignore element 611 

interactions. The accuracy of the proposed method has 4% to 30% improvement when additional 612 

information about the condition state of interacting elements is considered in the calculation. The 613 
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higher accuracy in predicting infrastructure’s future condition state is important for making 614 

optimal MR&R decisions under financial constraints. 615 

Three approaches for further advancing this work are (1) using a more realistic stochastic 616 

model instead of Markov Chain, (2) testing the model on different types of civil infrastructure 617 

and more complex systems, and (3) developing a SDM with less parameters to make sure the 618 

uncertainty can be thoroughly considered during the simulation. Markov Chain ignores the effect 619 

of sojourn time, i.e., the time spent in one condition state before transitioning to another. The 620 

semi-Markov Chain can be applied to address this limitation. In this study, a simple bridge 621 

element subsystem is tested as a demonstration. A more complex bridge element subsystem or 622 

other civil infrastructure systems, such as buried pipeline systems and pavements, can be tested 623 

in future research to verify the feasibility and accuracy of the proposed model.  624 
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SUPPLEMENTAL DATA 770 

 771 

Fig. S1. Condition State Distribution of Element 301 on the Training Bridge Data Set 772 
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Fig. S2. Condition State Distribution of Element 311 on the Training Bridge Data Set 777 
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 780 

Fig. S3. Condition State Distribution of Element 313 on the Training Bridge Data Set 781 
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Fig. S4. Condition State Distribution of Element 12 on the Training Bridge Data Set 788 
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