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15 ABSTRACT

16 Numerous studies have documented the linkages between agricultural nitrogen loads and 

17 surface water degradation.  In contrast, potential water quality improvements due to 

18 agricultural best management practices are difficult to detect because of the confounding 

19 effect of background nitrate removal rates as well as the groundwater-driven delay between 

20 land surface action and stream response.  To characterize background controls on nitrate 

21 removal in two agricultural catchments we calibrated groundwater travel time distributions 

22 with subsurface environmental tracer data to quantify the lag time between historic 

23 agricultural inputs and measured base-flow nitrate.  We then estimated spatially-distributed 

24 loading to the water table from nitrate measurements at monitoring wells, using machine 

25 learning techniques to extrapolate the loading to unmonitored portions of the catchment in 

26 order to subsequently estimate catchment removal controls.  Multiple models agree that in-

27 stream processes remove as much as 75% of incoming loads for one subcatchment while 

28 removing less than 20% of incoming loads for the other.  The use of a spatially variable loading 

29 field did not result in meaningfully different optimized parameter estimates or model 

30 performance when compared to spatially constant loading derived directly from a county-scale 

31 agricultural nitrogen budget.  While previous studies using individual well measurements have 

32 shown that subsurface denitrification due to contact with a reducing argillaceous confining unit 

33 plays an important role in nitrate removal, the catchment-scale contribution of this process is 

34 difficult to quantify given the available data.  Nonetheless, the study provides a baseline 

35 characterization of nitrate transport timescales and removal mechanisms that will support 

36 future efforts to detect water quality benefits from ongoing BMP implementation. 
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37 1 INTRODUCTION

38 Numerous studies have documented the linkages between agricultural nitrogen loads and 

39 surface water degradation (Vitousek et al., 1997; Schindler and Vallentyne, 2008).  The adverse 

40 effects of excess dissolved nitrate include the seasonal dissolved oxygen deficits and algal 

41 blooms that persist in many bays and estuaries despite widespread implementation of 

42 agricultural best management practices (BMPs) in upstream catchments.  This persistence is 

43 due to the ongoing discharge of groundwater nitrates that have accumulated in surficial 

44 aquifers during the past century (Puckett et al., 2011).  For example, in some agriculturally 

45 intensive regions of the Chesapeake Bay watershed as much as 70% of nitrate loads are 

46 delivered to the Bay or its tributaries as groundwater discharge (Lindsey et al., 2003, Ator and 

47 Denver, 2012; Sanford and Pope, 2013).

48 While loading reductions and water quality improvement due to BMPs have been 

49 documented at laboratory and field scales (e.g., Staver and Brinsfield, 1998), the anticipated 

50 effects of these practices are often difficult to detect at the outlets of agricultural watersheds in 

51 which they have been widely implemented (Osmond et al., 2012; Meals et al., 2010).  This 

52 difficulty is in part due to the lag time between land surface action and surface water response 

53 that results from groundwater transport pathways (Sanford and Pope, 2013; Tesoriero et al., 

54 2013; Science and Technical Advisory Committee, 2005).  However, the effects of BMPs are also 

55 difficult to disentangle from other spatially and temporally distributed factors affecting in-

56 stream loads (Gitau et al., 2010; Sutton et al., 2009).  These factors, which may vary widely 

57 between catchments, include background rates of nitrogen removal at the land surface, in the 

58 aquifer, or in the receiving stream (Meals et al., 2010; Böhlke and Denver, 1995).
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59 The objective of the study described in this paper was to differentiate and quantify long-

60 term, catchment-integrated nitrate removal mechanisms in two adjacent agricultural 

61 headwater catchments with similar contributing land use histories but contrasting stream 

62 nitrate concentrations.  While the fate and transport of agricultural nitrate has been widely 

63 investigated, there have been few if any studies that characterize long-term effects of 

64 subsurface or in-stream nitrate removal in a highly spatially variable system.  For example, 

65 many studies have examined the short-term (1-5 year) groundwater-driven discharge of 

66 agricultural nitrates to headwater streams with goals of differentiating seasonally variable 

67 nitrate sources (Yevenes and Mannaerts, 2012) or identifying changes in hydrologic 

68 connectivity between uplands and discharge areas (Petry et al., 2002; Wriedt et al., 2007; 

69 Molenat et al., 2008).  For the characterization of in-stream nitrate variability at these shorter 

70 time scales, it is not necessary to account for the full, multi-decadal loading history, and it is 

71 common to treat upgradient catchment nitrate as an effectively steady-state reservoir draining 

72 subject to hydrological controls (Vidon and Hill, 2004; Montreuil et al., 2010).  While some 

73 studies have directly measured in-stream rates of nitrogen removal for headwater catchments 

74 (Royer et al., 2004; Vidon and Hill, 2004; Mulholland et al., 2008), questions remain about 

75 extrapolating these measurements to larger spatial and temporal scales (Boyer et al, 2002).  

76 Few groundwater studies have examined the long-term behavior of agricultural nitrogen inputs 

77 and export.  Aquilina et al. (2012) used groundwater nitrate and chlorofluorocarbon (CFC) 

78 measurements to reconstruct the long-term nitrate input function for a catchment in Brittany 

79 (France); they simulated long-term in-stream nitrate concentrations at the catchment outlet 
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80 but assumed conservative export and did not investigate removal processes.  Sanford and Pope 

81 (2013) combined groundwater travel times from a calibrated regional simulation with a 

82 regression method to estimate spatially constant nitrate removal terms for the Delmarva 

83 Peninsula (USA); however, the scale of their investigation did not allow for spatial variation of 

84 removal terms or the effects of catchment-scale hydrogeological variability.  A few studies have 

85 documented the potential of catchment-scale, physics-based simulation of nitrate fate and 

86 transport through coupled landscape-groundwater-surface water systems (Conan et al., 2003; 

87 Galbiati et al., 2006; Wei et al., 2018), but these simulations are likewise limited to short time 

88 scales and subsurface linkages are not constrained by environmental tracer data.

89 To address these knowledge gaps we leveraged a multi-decadal record of catchment nitrate 

90 inputs and exports as well as a unique dataset of environmental tracer measurements, 

91 groundwater nitrate measurements, and in-stream nitrate measurements to simulate long-

92 term average nitrate controls for adjacent headwater streams.  We use a fully distributed, 

93 three-dimensional numerical simulation of the groundwater system to link land surface inputs 

94 to subsurface and in-stream nitrate concentrations, and we examined the significance of 

95 spatially distributed representation of catchment nitrate loading for parameter estimation and 

96 uncertainty.

97 2 MATERIALS AND METHODS

98 2.A Overview of Study Site

99 The 61-km2 study site (hereafter referred to as the ‘Upper Chester’ - cf. Nelson and Spies, 

100 2013) is in Kent County, MD, and is a low-relief agricultural watershed drained by small gaining 

Page 5 of 53 J. Environ. Qual. Accepted Paper, posted 10/16/2019. doi:10.2134/jeq2018.11.0408



6

101 streams; the Chesterville Branch (USGS gage 1493112) and Morgan Creek (USGS gage 1493500) 

102 subcatchments are the focus of this paper (Figure 1).  These subcatchments have similar land-

103 use histories, soil types, and stream discharge rates but widely different in-stream nitrate 

104 levels.  Water quality throughout the Upper Chester deteriorated during the last century due to 

105 agricultural intensification and elevated fertilizer inputs (Figure 2; cf. Böhlke and Denver, 1995).  

106 In recent years, a variety of management practices aimed at damping adverse agricultural 

107 effects and improving water quality have been implemented in the Upper Chester (Nelson and 

108 Spies, 2013).  Concentrations at the Morgan Creek stream gage ranged between 2 and 3 mg 

109 NO3-N/L for the duration of its sampling history; in contrast, concentrations at the Chesterville 

110 Branch stream gage have increased from 4-6 mg/L in the early 1990s and currently persist near 

111 10 mg/L (Figure 3).

112 Insert Figure 1

113 Insert Figure 2

114 Insert Figure 3

115 Previous studies in Morgan Creek suggest several potential reasons for the disparity in 

116 mean baseflow nitrate concentration though no catchment-scale studies have integrated the 

117 available data and quantified their relative contributions.  Böhlke and Denver (1995) found 

118 evidence of denitrification (elevated nitrate 15N levels, excess dissolved N2, and indicators of 

119 pyrite reduction) due to a glauconitic confining unit that outcrops at the lower reaches of 

120 Morgan Creek (Figure 1).  Bachman et al. (2002) observed increasing silica concentrations in a 
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121 downstream direction on Morgan Creek.  Groundwater silica concentrations elsewhere on the 

122 Delmarva Peninsula have been shown to positively correlate with tritium-derived groundwater 

123 ages (Clune and Denver, 2012), such that increased silica in the lower reaches of Morgan Creek 

124 may indicate the dilution of agricultural nitrates with older, higher silica, nitrate-free 

125 groundwater that reaches the stream from the lower confined aquifer.  Sediment cores in 

126 lower Morgan Creek show an abrupt change in the elevation of the confining unit and thus 

127 suggest a discontinuity that could allow influx of older groundwater from the deeper, confined 

128 aquifer (Bachman et al., 2002).  Finally, because the Morgan Creek stream channel is downcut 

129 into the low-permeability confining unit, direct groundwater discharge through the streambed 

130 is limited, and groundwater instead emerges through seeps at the edge of a near-stream 

131 floodplain before traveling to the main channel via small rivulets and sheetflow;  Duff et al. 

132 (2008) observed decreasing nitrate concentrations in the groundwater, rivulets, and stream, 

133 respectively, for lower Morgan Creek, suggesting the importance of riparian nitrogen removal.

134 Chesterville Branch has not been investigated with the same detail as Morgan Creek.  

135 However, the higher-permeability surficial sediments are much deeper under Chesterville 

136 Branch than Morgan Creek (Böhlke and Denver, 1995), suggesting that a higher percentage of 

137 base-flow discharge bypasses nitrate removal mechanisms in the riparian zone (Zell et al., 

138 2018).  Similar bypasses, and their importance for nitrate processing, have been noted in other 

139 agricultural systems (e.g., Tesoriero et al., 2013; Vidon and Hill, 2004).   
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140 2.B Simulation of Groundwater Flow and Nitrate Transport

141 In a separate study we document the development, calibration, and sensitivity/uncertainty 

142 analysis of several candidate numerical flow and transport simulation models for the Upper 

143 Chester (Zell et al., 2018).  The models represent a range of plausible interpretations of the 

144 Upper Chester groundwater system and simulate steady-state subsurface flow and advective 

145 solute transport using the US Geological Survey (USGS) finite-difference code MODFLOW 

146 (Harbaugh, 2005) and its companion particle-tracking software MODPATH (Pollock, 2012).  For 

147 each model, spatially variable recharge, horizontal hydraulic conductivity, anisotropy, and 

148 porosity were calibrated against groundwater levels, base-flow discharge, and more than 200 

149 subsurface measurements of atmospherically derived age tracers.

150 For the present study, we selected the two best performing flow and transport models and 

151 used them to (i) generate flux-weighed travel time distributions (TTD) at nitrate monitoring 

152 locations and (ii) identify the associated contributing recharge area for each nitrate monitoring 

153 location in the study area (i.e., monitoring wells and the Chesterville Branch and Morgan Creek 

154 catchment outlets).  In the remainder of the manuscript we refer to these TTD models as the 

155 nitrate transport ‘base models’.  The selected base models are chiefly differentiated by 

156 assumptions about base-flow indices (BFI) in the Upper Chester and are consequently labeled 

157 ‘LowBFI’ and ‘HighBFI’ (see Zell et al., 2018, for more details).  Given the TTDs provided by these 

158 base models, the concentration of a solute at a monitoring location j may be calculated by the 

159 convolution of a TTD with the time series of solute inputs to the catchment, expressed in its 

160 discrete form as 
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𝐶𝑗[𝑡] =
∞

∑
𝜏 = 0

𝐶[𝑥,𝑦,𝑡 ― 𝜏]𝑔𝑗[𝜏] , ( 1 )

161 where C(x,y,t-) is the solute (e.g., dissolved nitrate) input signal and gj() is the flux-

162 weighted TTD of groundwater sampled at j.

163 2.C Estimation of nitrate loading to the water table

164 As an initial estimate of nitrate inputs to the water table (i.e., C(x,y,t-)  in Equation 1) we 

165 calculated a county-level nitrogen budget for the years 1930-2015 using Kent County (MD) 

166 agricultural data and nitrogen wet deposition data for the Maryland Eastern Shore (Figure 2).  

167 In the remainder of the paper we refer to this spatially constant, county-scale time series as the 

168 ‘reference loading’.  We then calibrated multiple sets of spatially variable loading factors that, 

169 when applied to the reference loading time series, resulted in a range of estimates of the 

170 temporally and spatially variable flux of nitrate across the water table.  Loading factors were 

171 estimated by calibrating the nitrate transport model (Equation 1) solely against observed 

172 groundwater nitrate concentrations under different calibration scenarios that varied with 

173 respect to both the base flow and transport model as well as the weighting scheme applied to 

174 the nitrate observation dataset (Table 1 and Supplemental Materials Section S1).

175 Insert Table 1

176 Due to the generally oxic character of the subsurface and the expected conservative nitrate 

177 transport from the water table to observation wells, we assumed that most groundwater 

178 nitrate concentrations in the Upper Chester provide direct information about nitrate loading to 

179 the water table (i.e., after nitrate removals such as crop export or soil denitrification) (Green et 
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180 al., 2010).  However, while groundwater nitrate observations in the Upper Chester are 

181 abundant when compared to many sites, monitoring well nitrate data only constrain a portion 

182 of the model domain.  Each stage 1 scenario therefore included use of a Gradient Boosted 

183 Regression (GBR) method to extrapolate the calibrated water table loading factors from the 

184 monitored subdomain to the entire model area on the basis of proxy relationships with other 

185 mapped data.  These candidate explanatory variables included soils and land use data derived 

186 from national-scale datasets as well as estimates of hydrologic states and system properties 

187 developed during this study.  The GBR methods and results are fully described in the 

188 Supplemental Materials.

189 2.DEstimation of catchment nitrate removal

190 In the second stage of parameter estimation, we used the stage 1 scenarios as a range of 

191 possible loadings and estimated nitrate removal at the confining unit and in/near each stream 

192 by calibrating the resulting nitrate transport models against base-flow nitrate observations.  

193 Base-flow nitrate concentrations were considered to be those measurements associated with a 

194 stream discharge observation for which the separated base-flow was more than 85% of total 

195 flow (using the digital filter separation method of Arnold et al., 1995) (Figure 3).

196 As discussed in the development of the flow and transport base models, uncertainties about 

197 the spatial distribution of catchment hydraulic conductivity, porosity, and recharge propagate 

198 through to the simulated base-flow TTDs (Zell et al., 2018).  Therefore, while the base-flow TTDs 

199 used in this study are relatively well-constrained by hydraulic and atmospheric tracer data, it is 

200 expected that they may be updated by conditioning them upon stream nitrate data.  We 
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201 consequently allowed the calibration to adjust the TTDs by means of stream-specific scaling 

202 factors that may improve the simulation of base-flow nitrate trends.  Note also that, for 

203 purposes of evaluating model uncertainty, the inclusion of TTD scaling parameters is a means of 

204 remedying non-conservative uncertainty estimates that result from assuming that base-flow 

205 travel times are known.

206 Due to correlations between stream removal and confining unit removal in Morgan Creek it 

207 was assumed that fixing the confining unit parameter value (and thus routing all available 

208 stream nitrate information to the stream removal parameters) would reduce the uncertainty on 

209 the estimated stream parameters.  On the evidence of high removal efficiencies observed by 

210 Böhlke and Denver (1995) we included stream scenarios (‘Fixed CU’) for which the confining 

211 unit removal efficiency was assumed to be perfectly known as 0.80.  Similarly, it was assumed 

212 that the use of the TTD scaling parameters – while admitting a hydrologically realistic degree of 

213 flexibility to the simulated groundwater lag times – increased uncertainty on the estimates of 

214 stream removal rates.  To query this effect we included an additional calibration scenario (‘No 

215 TTD Scaling’) for which the stream base-flow TTD simulated by the base model was fixed (Table 

216 1).

217 3 RESULTS

218 3.A Nitrate loading to the water table

219 The calibrated loading scenarios collectively reproduce the relative mean groundwater 

220 nitrate concentration in each subcatchment as well as the preponderance of individual 

221 observed values (Figure 4), though some groundwater monitoring locations are not well-
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222 simulated by any of the scenarios.  Simulated values in the Morgan Creek catchment (e.g., at 

223 well KEBE206, labeled on Figure 4) are much more sensitive to the calibration structure than 

224 are simulated values in Chesterville Branch; this is expected given that simulated subsurface 

225 travel times in Morgan Creek are more sensitive to assumptions about the BFI than are those in 

226 Chesterville Branch (cf. Zell et al., 2018).  For both subcatchments the mean simulated value is 

227 slightly lower than the mean observed value due to two features of the stage 1 regression 

228 methodology.  First, all simulated and observed groundwater nitrate concentrations were 

229 transformed by the natural log in order to prevent the measurements of very high nitrate 

230 concentrations from dominating the regression.  Second, observation variance was higher (and 

231 therefore observation weights were lower) for the highest concentrations.

232 Insert Figure 4

233 3.B Catchment nitrate controls

234 For stage 2 of parameter estimation each stream nitrate model was driven by a different 

235 nitrate loading scenario but calibrated against an identically weighted dataset of stream nitrate 

236 observations; therefore, unlike calibration stage 1, the weighted sum of square errors (WSSE) 

237 provides a comparative measure of stream model performance (Figure 5).  The models 

238 collectively show that stream processes in Morgan Creek remove a higher fraction of incoming 

239 loads (0.55-0.77) than do stream processes in Chesterville Branch (0.05-0.41); for the nine best 

240 performing models, the range of calibrated removal rates for Chesterville Branch is even lower 

241 (0.05-0.19), though for most cases the estimate for Chesterville Branch is highly uncertain.  The 

242 large uncertainty bounds for the Chesterville Branch removal parameter reflect the relatively 
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243 large measurement variability for the Chesterville Branch base-flow nitrate concentrations used 

244 as calibration targets (Figure 6a).  As measured by the WSSE, nine of the twelve resulting 

245 calibration scenarios performed similarly (i.e., with calibration WSSE <= 0.25 of the highest 

246 WSSE) in their capacity to reproduce the stream nitrate time series (Figure 5 and Table 1).  With 

247 the exception of Loading Scenario B, each of the LowBFI models performed better than the 

248 corresponding HighBFI model; this performance difference may corroborate the results of the 

249 earlier calibration studies, which found that the LowBFI hydrology model performed better 

250 than the HighBFI hydrology model in its simulation of water levels and atmospheric tracer 

251 transport.

252 Insert Figure 5

253 While the nitrate removal impact of the confining unit is well-demonstrated from the 

254 interpretation of individual wells in the Morgan Creek catchment (Böhlke and Denver, 1995), 

255 the catchment-level impact of the confining unit on nitrate removal is uncertain given the 

256 available data and the subsurface model used in this study (i.e., the simulated location of the 

257 confining unit and its resulting impact on the flow regime and nitrate removal).  Assigning the 

258 confining unit a very high removal rate (i.e., the Fixed CU scenario) did result in the lowest 

259 estimate of in-stream/near-stream removal rates but did not meaningfully impact the model 

260 performance or the uncertainty associated with the remaining estimated parameters.  In 

261 contrast, removing the TTD scaling parameters did greatly reduce the uncertainty of the 

262 estimated removal rates for both Chesterville Branch stream processing and the confining unit 

263 but at the cost of model performance.
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264 When compared to Chesterville Branch, the higher rates of in-stream nitrate removal and 

265 the larger influence of the confining unit in Morgan Creek result in a more subdued response to 

266 changes in catchment agricultural inputs (Figure 6a).  For the HighBFI base models, the total 

267 nitrate loads seen by both subcatchment groundwater systems are similar (Figure 6b).  

268 However, for the LowBFI base models, total nitrate loads to the water table are noticeably 

269 higher in the Chesterville Branch subcatchment despite the smaller surface water drainage in 

270 Chesterville Branch compared to Morgan Creek.  This difference in loading is in part because 

271 the simulated groundwater divide for the LowBFI scenarios is not coincident with the surface 

272 water divide, such that recharge from the upper portions of the Morgan Creek subcatchment 

273 discharges to Chesterville Branch, thus making the contributing drainage areas for each stream 

274 more similar than would be suggested by topography alone (Zell et al., 2018).  Given the 

275 modelled location of the confining unit, few Chesterville Branch flow paths that recharged after 

276 1940 contact the reducing confining unit and there is thus negligible nitrate removal.  In 

277 contrast, the confining unit removed roughly one-third of Morgan Creek loads under the Fixed 

278 CU scenario and approximately 10% of loads when averaged across multiple scenarios.

279 Insert Figure 6

280 In addition to illuminating the nitrate removal distinctions between the two catchments, 

281 the models suggest that Morgan Creek base-flow has a larger fraction of pre-agricultural water 

282 than does base-flow in Chesterville Branch, such that lower nitrate concentrations in Morgan 

283 Creek may result in part from the dilution of agricultural nitrates.  For both streams, model 

284 calibration to the in-stream nitrate data shifted the base-flow TTD towards ages older than 
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285 those derived from the base-model calibration against subsurface tracer data (Figure S3); the 

286 calibrated shift is greater for Morgan Creek and results in a median age older than the median 

287 age in Chesterville Branch.  As other authors have discussed (cf. Kirchner, 2006) parameters 

288 used to describe environmental systems may function as proxies for processes that are not 

289 explicitly represented in a model.  In this case, in-stream nitrate data may be informing the 

290 base-flow TTD previously constrained by the subsurface tracer data; however, it is also possible 

291 that the calibrated TTD scaling factors reflect other hydrological or geochemical dynamics that 

292 would likewise delay the translation of the fertilizer purchase record to an in-stream water 

293 quality signal.  For example, any subsurface retardation of nitrate relative to the non-retarded 

294 transport of atmospheric tracers would, under our conceptual model, be subsumed by 

295 adjustments to the TTD; these velocity differences could result from nitrate sorption, which is 

296 generally considered to be negligible but has been observed in some column studies (Clay et al., 

297 2004).  Similarly, TTD adjustments here could be in response to dispersive effects not evident 

298 during base model calibration nor represented by our advective assumptions....

299 4 DISCUSSION AND CONCLUSIONS

300 Quantifying background controls on nitrate transport and removal is essential for their 

301 subsequent disentanglement from water quality trends that may be due to management 

302 actions.  As such, this study provides a baseline characterization of nitrate transport timescales 

303 and removal mechanisms that will support future efforts to detect water quality benefits from 

304 ongoing BMP implementation.  Simulated groundwater nitrate concentrations for several sites 

305 were highly sensitive to the range of stage 1 calibration scenarios (Figure 4).  The poorly 
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306 performing groundwater sites are likely a result of local heterogeneity of either the flow system 

307 or the nitrate loading at a spatial scale not available to our discretization.  For example, 

308 groundwater nitrate measurements include observations from three closely-spaced transects of 

309 3-4 wells each that sampled shallow groundwater in the lower reach of Morgan Creek (these 

310 include wells KEBD162 and KEBD163 – cf. Figure 4).  This small area (i.e., all observations 

311 separated by less than 300 meters) is subject to very steep nitrate gradients that cannot be 

312 reproduced by our catchment-scale model.  These gradients appear to be due to a combination 

313 of converging flow paths of widely disparate ages, nitrate removal due to denitrification in the 

314 confining unit sediments, and concentrated near-stream loading that possibly originates at a 

315 dairy operation near lower Morgan Creek (Puckett et al., 2008; Bachman et al., 2002; Böhlke 

316 and Denver, 1995).

317 While the sensitivity of simulated groundwater nitrate to the range of stage 1 calibration 

318 scenarios may suggest the importance of multiple plausible estimates of water table loading, 

319 the loading time series derived directly from the county-scale agricultural nitrate budget, 

320 without subsequent conditioning on groundwater nitrate data, resulted in similar calibrated 

321 stream models (Figure 5).  Thus, for purposes of estimating long-term catchment nitrate 

322 controls from annually averaged stream nitrate concentrations, the available groundwater 

323 nitrate data did not substantially affect either the estimate of total nitrate available for stream 

324 export or the distribution of those inputs across the landscape.  However, upland groundwater 

325 nitrate data and the specification of spatially distributed inputs may be more important for 

326 resolving nitrate export behavior at shorter timescales or when using a transient flow and 
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327 transport simulation to characterize subsurface linkages.  For example, several studies have 

328 shown that in-stream nitrate concentrations can be highly sensitive to the time-variable 

329 hydrological connectivity that delivers base-flow from uplands to discharge areas (Petry et al., 

330 2002; Ocampo et al., 2006; Wriedt et al., 2006; Molenat et al., 2008).  The wide sub-annual 

331 range of base-flow nitrate concentrations shown in Figure 6a may reflect seasonal changes in 

332 upland gradients and leachate flushing as more permeable upland or midslope areas are 

333 activated and deactivated with rising and falling water tables.  These effects, as well as the 

334 temperature-dependent stream metabolism effects on nitrogen removal (Bernot et al., 2006), 

335 are not captured by our simulation of the long-term export signal.

336 The current analysis cannot conclusively explain the disparate removal rates between the 

337 two catchments.  However, two potential factors may be considered.  Studies in the last decade 

338 (Wollheim et al., 2006, Mulholland et al., 2008; Alexander et al., 2009; Böhlke et al., 2009; 

339 Scanlon et al., 2010) have variously shown nitrate removal efficiency in smaller order streams 

340 to be a function of hydraulics (i.e., stream depth or velocity) or water quality (i.e., stream 

341 nitrate concentration).  At shallow depths and low velocities, stream nitrates have longer 

342 exposure to nitrogen uptake services from in-channel biota and sediments (Alexander et al., 

343 2009).  Near-stream and in-stream hydraulics are likely of importance here; i.e., as described 

344 above, the confining unit which outcrops in the Morgan Creek lower reaches may not only 

345 account for nitrogen removal through denitrification, but also controls the seepage of base-

346 flow discharge to the main channel in a manner that increases exposure of nitrates to biotic 

347 uptake.  Furthermore, a coarse comparison of the stream velocities and associated cross-
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348 sectional flow areas (Figure S3) suggests that Chesterville Branch has shorter in-stream 

349 residence times due to a shorter network and higher velocities.  The National Hydrography 

350 Dataset (NHDPlusV2) approximation of the Morgan Creek stream network (above the gage 

351 used in this study) is approximately 3.5 times the length of Chesterville Branch (also above the 

352 gage), such that the length-normalized removal efficiencies may be more similar than their 

353 accumulated downstream effect.

354 Less well understood is the evidence that nitrogen removal efficiency declines with 

355 increasing nitrate concentration.  For example, Mulholland et al. (2008) found across a range of 

356 smaller order streams that increasing the stream nitrate concentration from 1.5 to 15 mg/L 

357 may reduce the nitrate removal fraction by more than half.  The results of this study may 

358 reiterate questions of potential importance for management of nitrogen export from lower 

359 order streams; namely, are the low removal rates in Chesterville Branch (i) a characteristic of 

360 the natural system or (ii) a legacy of stream degradation?  If the latter, might nitrate processing 

361 be improved (i.e., restored) by reducing the headwater loads?  Further study is required to 

362 evaluate the relative importance of headwater loads versus loads from tributaries or base-flow 

363 discharge further downstream at the subcatchment outlet (see Figure S4), and whether these 

364 loads are responsible for degrading the in-stream processing capacity.  These future studies 

365 could include prediction uncertainty analysis and monitoring network design that would reduce 

366 the uncertainty associated with the relative influence of confining unit and in-stream/near-

367 stream mechanisms.  But the results of this analysis suggest a greater urgency for placement of 
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368 BMPs in the Chesterville Branch catchment as well as continued in-stream monitoring that may 

369 detect their potential effects.
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574 9 FIGURE CAPTIONS

575 Figure 1.  Upper Chester study area. The heavy black line delineates the model domain.

576

577 Figure 2.  (a) Crop acreage, (b) agricultural nitrogen inputs and exports, and (c) estimated nitrate concentrations 

578 for agricultural recharge in Kent County, MD.  See the Supplemental Materials for a complete description of the 

579 input and export datasets and the calculation of the recharging nitrate time series.  The high loading scenario is the 

580 rate calculated by restricting the county-scale mass of recharging nitrate to only reported corn acreage, as 

581 implemented in Equation S3 and used in this study. The low loading scenario is the rate calculated by distributing 

582 the recharging nitrate load to the sum of reported corn, soybean and wheat acreage and shown here only for 

583 purposes of comparison.

584

585 Figure 3. Observed stream nitrate concentrations at the (a) Morgan Creek and (b) Chesterville Branch gages (see 

586 Figure 1 for gage locations).  Crosses show those observations determined to have occurred under base-flow 

587 conditions and used to formulate calibration targets for this study; hollow circles show observations determined to 

588 have occurred under event flow conditions.  See Figure 6 for time periods of data collection.  Stream discharge and 

589 nitrate concentrations downloaded from the National Water Information System (NWIS; U.S. Geological Survey, 

590 2016).

591

592 Figure 4.  Simulated vs. observed groundwater nitrate concentrations for (a) upland and (b) riparian locations for 

593 the spatially-distributed nitrate loading scenarios estimated during stage 1 of model calibration.  Each vertical line 

594 shows the range of nitrate values simulated by the multiple calibration scenarios for a single point in space and 

595 time (recalling that some observation locations have multiple measurements).

596

597 Figure 5.  Model performance and estimated values for nitrate removal parameters for the Stage 2 calibration 

598 scenarios.  The ‘Fixed CU’ and ‘No TTD Scaling’ scenarios are described in the text; see the Supplemental Material 
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599 for full description of the remaining scenarios. Error bars express +/- two standard deviations, calculated by PEST++ 

600 using Schur’s complement (cf. Fienen et al., 2010).

601

602 Figure 6.  Simulated stream nitrate. The shading in (a) shows the range of concentrations simulated by the nine 

603 models with the lowest WSSE (see Table 1); markers in (a) show the annually-averaged stream concentrations 

604 used as calibration targets; the error bars for each marker show the range of base-flow nitrate concentrations from 

605 which the annual average was calculated. Error bars without an accompanying marker show data acquired after 

606 model development and not used in calibration.  The shaded and hatched regions in (b) are computed from the 

607 mean of the nine models with the lowest WSSE (see Figure 5); the dashed line in (b) show the simulated results of 

608 the single Fixed CU scenario.
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609 10 TABLES

Table 1.  Model Scenarios. WSSE = Weighted sum of squared errors calculated during stream model calibration.  
Model performance rank is 1 (best) to 12 (worst) and is discussed in the Results section, below.

Stage 1: Nitrate Loading to Water Table Stage 2: Nitrate Removal

Base 
Model

Loading 
Scenario Name

Groundwater NO3 
Weighting Scheme

Stream 
Scenario Name

Fixed 
Parameters

Model Rank 
(WSSE)

LowBFI 
Reference

[No additional calibration; 
spatially-constant loading 
derived from county data]

LowBFI
Reference

3
(138)

LowBFI
A

Standard error of 
measurement

LowBFI
A

1
(116)

LowBFI
B

Natural log of standard 
error of measurement

LowBFI
B

12
(1225)

LowBFI
Mean

2
(120)

LowBFI
FixedCU

Confining Unit 
Removal 

Fraction = 0.80

4
(172)

Lo
w

 B
FI

LowBFI
Mean

[No additional calibration; 
each pixel in the loading 

field equal to the mean of 
the A and B scenarios]

LowBFI
No TTD Scaling

TTD Scale 
Factor = 1

10
(482)

HighBFI 
Reference

[No additional calibration; 
spatially-constant loading 
derived from county data]

HighBFI 
Reference

8
(257)

HighBFI
A

Standard error of 
measurement

HighBFI
A

5
(190)

HighBFI
B

Natural log of standard 
error of measurement

HighBFI
B

7
(234)

HighBFI
Mean

6
(197)

HighBFI
FixedCU

Confining Unit 
Removal 

Fraction = 0.80

9
(302)

Hi
gh

 B
FI

HighBFI
Mean

[No additional calibration; 
each pixel in the loading 

field equal to the mean of 
the A and B scenarios]

HighBFI
No TTD Scaling

TTD Scale 
Factor = 1

11
(901)

610
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Figure 1.  Upper Chester study area. The heavy black line delineates the model domain. 
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Figure 2.  (a) Crop acreage, (b) agricultural nitrogen inputs and exports, and (c) estimated nitrate 
concentrations for agricultural recharge in Kent County, MD.  See the Supplemental Materials for a complete 
description of the input and export datasets and the calculation of the recharging nitrate time series.  The 

high loading scenario is the rate calculated by restricting the county-scale mass of recharging nitrate to only 
reported corn acreage, as implemented in Equation S3 and used in this study. The low loading scenario is 
the rate calculated by distributing the recharging nitrate load to the sum of reported corn, soybean and 

wheat acreage and shown here only for purposes of comparison. 
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Figure 3. Observed stream nitrate concentrations at the (a) Morgan Creek and (b) Chesterville Branch gages 
(see Figure 1 for gage locations).  Crosses show those observations determined to have occurred under 

base-flow conditions and used to formulate calibration targets for this study; hollow circles show 
observations determined to have occurred under event flow conditions  See Figure 6 for time periods of data 

collection.  Stream discharge and nitrate concentrations downloaded from the National Water Information 
System (NWIS; U.S. Geological Survey, 2016). 
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Figure 4.  Simulated vs. observed groundwater nitrate concentrations for (a) upland and (b) riparian 
locations for the spatially-distributed nitrate loading scenarios estimated during stage 1 of model calibration. 

 Each vertical line shows the range of nitrate values simulated by the multiple calibration scenarios for a 
single point in space and time (recalling that some observation locations have multiple measurements). 
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Figure 5.  Model performance and estimated values for nitrate removal parameters for the Stage 2 
calibration scenarios.  The ‘Fixed CU’ and ‘No TTD Scaling’ scenarios are described in the text; see the 

Supplemental Material for full description of the remaining scenarios. Error bars express +/- two standard 
deviations, calculated by PEST++ using Schur’s complement (cf. Fienen et al., 2010). 
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Figure 6.  Simulated stream nitrate. The shading in (a) shows the range of concentrations simulated by the 
nine models with the lowest WSSE (see Table 1); markers in (a) show the annually-averaged stream 

concentrations used as calibration targets; the error bars for each marker show the range of base-flow 
nitrate concentrations from which the annual average was calculated. Error bars without an accompanying 
marker show data acquired after model development and not used in calibration.  The shaded and hatched 
regions in (b) are computed from the mean of the nine models with the lowest WSSE (see Figure 5); the 

dashed line in (b) show the simulated results of the single Fixed CU scenario. 
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S1 CALCULATION OF NITRATE INPUTS TO THE WATER TABLE

S1.A Estimation of nitrate loading to the water table in monitored portions of the 
catchment (Calibration Stage 1a)

Nitrate loading to the water table was first estimated by calibrating the nitrate transport 

model solely against observed groundwater nitrate concentrations.  Groundwater nitrate 

observations were downloaded from the U.S. Geological Survey (USGS) National Water 

Information System (NWIS; U.S. Geological Survey, 2016) and aggregated into annually 

averaged concentrations at each observation well; in total, 213 subsurface nitrate 

measurements at 52 different wells were aggregated into 89 subsurface calibration targets that 

date between 1988 and 2004 (see Figure 1 in manuscript for locations of nitrate monitoring 

wells).

In order to allow spatial variation of water table nitrate loading, we parameterized the 

inputs as a two-dimensional (2D) set of loading factors.  Loading factors were estimated using 

an evenly spaced grid of pilot points, with pilot point separation approximating the length scale 

of the smallest agricultural fields.  The 2D loading field of nitrate inputs was then interpolated 

from the loading factors using ordinary kriging implemented with the PEST utilities PPKFAC and 

FAC2REAL (Doherty, 2015).  Parameter estimation was performed using PEST ++ (Welter et al., 

2015) with singular value decomposition (SVD) and preferred-value Tikhonov regularization.  

Briefly stated, these regularization devices make a highly parameterized inverse-modeling 

problem well-posed and avoid over-fitting by constraining a parameter value to some prior 

estimate unless the calibration data provide a compelling reason for that estimate to change; 

cf. Fienen et al. (2009) for more detailed description of this parameter estimation methodology.
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For the years 1930-2015, spatially and temporarily variable nitrate inputs were calculated 

by multiplying the interpolated loading factors by a reference load derived from agricultural 

and wet deposition components for that year; agricultural loading prior to 1930 was assumed 

to be zero.  The reference load for each year consisted of an agricultural portion and a wet 

deposition portion.  The agricultural portion of the reference load for each year was derived 

from county-level nitrogen budgets, with the total mass of agricultural nitrogen available for 

recharge in year i calculated as 

𝑁𝑡𝑜𝑡,𝑖𝑛,𝑖 = 𝑁𝑎𝑔,𝑖𝑛,𝑖 ― 𝑁𝑎𝑔,𝑜𝑢𝑡,𝑖  (Eq. S1)

where Nag,in is the agricultural nitrogen inputs and Nag,out is the agricultural nitrogen exports.  

Historical county-level agricultural nitrogen inputs were derived from estimated and reported 

inorganic fertilizer sales (Alexander and Smith, 1990; Gronberg and Spahr, 2012; Brakebill and 

Gronberg, 2017) and estimates of poultry manure production (Sanford and Pope, 2013) (see 

Figure 3 in manuscript).  Historical county-level agricultural nitrogen exports were derived from 

the annual production of corn, soybeans, and wheat as published by the National Agricultural 

Statistics Service (NASS).  The amount produced of each crop was converted to mass nitrogen 

by assuming the nitrogen content of harvested crops to be 0.9, 3.8, and 1.5 pounds nitrogen 

per bushel for corn, soybeans, and wheat, respectively (Murrell, 2008).  In the Mid-Atlantic as 

much as 65-75% of the nitrogen content of soybeans can be due to atmospheric fixation and 

not to fertilizer inputs (http://extension.udel.edu/factsheets/nitrogen-management-for-

soybean); for our mass balance calculations we consequently adjusted the nitrogen content 

coefficient of soybeans to 1.1 pounds nitrogen exported per bushel.  The nitrogen within 
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reported harvested silage (which is not reported for the full period of record) was assumed to 

remain in the catchment and thus be available for leaching.

For each year, county-level estimates of the residual nitrogen available after crop uptake 

(Eq. 2) were converted to an areal loading rate that was applied within the model domain.  Corn 

receives a much higher fraction of total fertilizer inputs for a given year than other crops 

(Hancock and Brayton, 2006), such that the ratio of fertilizer sales to harvested corn acreage 

provides a provisional estimate of the areal loading rate for those areas where it was applied.  

We consequently calculated the reference rate for year i as

𝑅𝑎𝑡𝑒 𝑅𝑒𝑓,𝑖 =
𝑁𝑡𝑜𝑡,𝑖𝑛,𝑖

𝐴𝑟𝑒𝑎 𝐶𝑜𝑟𝑛𝑖 
+ 𝑅𝑎𝑡𝑒 𝑎𝑡𝑚,𝑖  (Eq. S2)

where Ntot,in,i is the county-level mass of nitrogen remaining after crop export for year i (Eq. 

S1), Area Corni is the county-level area of harvested corn for the year I, and Rateatm,i is rate of 

annual wet deposition.  Rates of nitrate wet deposition were obtained from the National 

Atmospheric Deposition Program monitoring site in Wye, Maryland, approximately 30 miles 

southeast of the study site (data downloaded from http://nadp.sws.uiuc.edu on 6/4/2015).  

Wet deposition data were available from 1983-2006.  We assumed zero wet deposition for 

years prior to 1935; for years between 1935 and 1983 we used a linear interpolation to 

estimate annual wet deposition rates.

Several factors govern the delivery of excess nitrates to the water table and their transport 

through the subsurface to discharge locations.  For example, multiple researchers have shown 

the particular sensitivity of leachate concentrations to precipitation patterns, as rainfall deficits 

during the growing season reduce crop uptake efficiencies and increase pools of excess nitrate 
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(Burt et al., 2008), while large rainfall amounts post-harvest accelerate nitrate flushing from the 

root zone to the water table (Staver and Brinsfield, 1998).  In order to account for the 

dampening of the nitrate input signal that likely occurs at a given location through delays and 

mixing in the root zone and unsaturated zone (as well as similar dampening that would occur 

due to crop rotation – cf. Hancock and Brayton, 2006), we transformed the time series 

calculated with Equation S2 using a 3-year moving average.

Note that in the case of an input signal that is constant across the landscape at a given time 

(as is effectively true, e.g., of age tracers that recharge from the atmosphere), the contributing 

recharge area for each monitoring location is unimportant.  However, even in a majority 

agricultural catchment, the sources of nitrate may vary dramatically across the landscape, such 

that for purposes of simulating the nitrate concentration at monitoring wells the input signal 

must be specified with respect to both time and space.  We generated distinct estimated 

distributions of loading factors by performing the Stage 1 calibration with both the LowBFI and 

HighBFI transport base models.  In addition, we used two different weighting schemes to 

determine the relative importance of the different groundwater nitrate calibration targets 

during the optimization.  Briefly stated, the weight for each annually averaged groundwater 

nitrate observation was initially calculated from the standard error of measurement (weighting 

scenario A) for all measurements within a given year (i.e., for the distribution of measurements 

that were aggregated into the annual average).  Because this weighting scheme resulted in a 

large disparity of weights and a relatively small number of observations dominating the 

regression we also considered an alternative weighting scheme in which we reduced the range 
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of weights by using a natural log transform and enforcing a minimum weight (weighting 

scenario B).  We therefore generated four separate water table loading scenarios for the 

monitored portion of the catchment.  After extrapolation of the loading field from the 

monitored to the unmonitored portions of the catchment we generated additional loading 

scenarios by calculating – for each base model – the spatially distributed means of the two 

weighting scenarios (Table S1).
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Table S1. Water table loading scenarios generated from Stage 1 of parameter estimation.

Scenario Name Base Model
Groundwater NO3 
Weighting Scheme

Additional 
Transformations

LowBFI Scenario A LowBFI Standard error of 
measurement --

LowBFI Scenario B LowBFI Natural log of 
scenario A weights --

LowBFI Scenario A-B Mean LowBFI --

Spatially distributed field 
with each point equal to 

the mean of Distributed_A 
and Distributed_B scenarios

HighBFI Scenario A HighBFI Standard error of 
measurement --

HighBFI Scenario B HighBFI Natural log of 
scenario A weights --

HighBFI Scenario A-B Mean HighBFI --

Spatially distributed field 
with each point equal to 

the mean of A and B 
scenarios

S1.B Extrapolation of the estimated water table loading from the monitored portion to the 
unmonitored portions of the catchment (Calibration Stage 1b)

Following the Stage 1a estimation of nitrate loading factors we differentiated (i) the 

portions of the estimated loading field that were well-constrained by the groundwater data 

from (ii) those portions that were not well-constrained and thus required some other 

mechanism for estimating the loading factor.  We defined the ‘monitored’ portion of the 

landscape as those areas for which the post-calibration reduction in parameter uncertainty (i.e., 

compared to the pre-calibration parameter uncertainty) for the nitrate loading factor was at 
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least 10%, where the post-calibration parameter uncertainty is derived via linearized Bayesian 

methods, 

𝜃,𝑝𝑜𝑠𝑡 = 𝜃 ― 𝜃𝑱𝑇[𝑱𝜃𝑱𝑇 + 𝜀] ―1𝑱𝜃  (Eq. S3)

where post is the post-calibration parameter covariance,  is the covariance matrix of prior 

parameter probability distribution (here derived from the estimated bounds on parameter 

values); J is the Jacobian matrix of observation sensitivity to parameter perturbations; and  is 

the covariance matrix of simulation error and measurement error.  For this study  is defined 

as a diagonal matrix populated by the inverse of observation weights (all off-diagonal elements 

are equal to 0).

In order to extrapolate the water table nitrate loading to the entire simulation domain, we 

used a Gradient Boosted Regression (GBR; implemented with the Python scikit-learn library: 

Pedregosa et al., 2011) to develop an empirical relationship between several candidate 

variables (Table S2) and the nitrate loading rate estimated in Stage 1.  (Note that for clarity, in 

the manuscript and in the remainder of the Supplemental Material we use the term ‘GBR-

estimated’, ‘GBR-based’, etc., to refer to the empirical relationship between candidate variables 

and the nitrate loading derived with the GBR; we reserve the general term ‘modeled’ to refer to 

simulation of nitrate transport described above).  Each of the candidate variables listed in Table 

S2 is mapped for the entire simulation domain and is thus a potential predictor of nitrate 

loading for those areas where no nitrate loading data (i.e., groundwater nitrate data) exists.  

Most of the mapped variables are derived from national-scale datasets [e.g., Cropland Data 

Layer (USDA, 2014), National Land Cover Dataset, and Soil Survey Geographic Database].  Two 
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datasets (spatially distributed porosity and recharge) were estimated for the model domain 

during the flow and transport model development described in the companion paper (Zell et 

al., 2018).  Two additional datasets were derived for this study.  First, high resolution Maryland 

light detection and radar (lidar) elevation data allows identification of field-scale topographic 

depressions that are the result of drained wetlands.  These former wetlands, referred to as 

‘Delmarva Bays’, are often characterized by higher organic content and, therefore, potentially 

higher rates of soil denitrification (Ator et al., 2012).  We consequently generated a map of 

Delmarva Bays in the model area to use as input for the machine-learning extrapolation.  

Second, a large commercial nursery in the headwaters of Chesterville Branch is not clearly 

represented in land use datasets and was consequently mapped and included as a potential 

explanation of nitrate loading to the water table.
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Table S2. Mapped variables used as candidate explanatory variables for the GBR-estimated nitrate input 
function.

Variable Name Description Source
CDL_X Land use category, where X = year Cropland Data Layer

DelmarvaBays Topographic indication of drained 
wetland This study

Mean_DEM Mean elevation Maryland Lidar Dataset
NLCD_X Land use category, where X = year National Land Cover Dataset

Nursery Outline of nursery in Chesterville 
Branch headwaters This study

Porosity
Porosity estimated during 
calibration of flow and transport 
base model

Zell et al. (2018)

Recharge
Recharge estimated during 
calibration of flow and transport 
base model

Zell et al. (2018)

SSURGO_aws_X_wta Available soil water storage, where 
X = depth of soil compartment (cm)

SSURGO_drclassdcd Soil drainage class, dominant 
condition

SSURGO_drclasswettest Soil drainage class, wettest 
condition

SSURGO_hydclprs Soil hydric classification
SSURGO_hydgrpdcd Soil hydrologic group
SSURGO_pondfreqprs Ponding frequency

SSURGO_wtdepannmin Water table depth, annual 
minimum

SSURGO_wtdpaprjunmin Water table depth, summer 
minimum

Soil Survey Geographic Database 
(SSURGO)

The GBR-based extrapolation was implemented as follows.  At the conclusion of Stage 1a, 

the model cells in the monitored subdomain were randomly assigned to a training dataset (75% 

of monitored model cells) and a testing dataset (25% of monitored model cells).  The training 

dataset was used with a 10-fold cross-validation to identify the GBR hyperparameters (e.g., 

number of trees, tree depth, minimum samples per leaf) that minimized predictive error; the 

testing dataset was reserved to evaluate the performance of the GBR after the optimal 

hyperparameters were identified.  Finally, the tuned GBR was used to assign a nitrate loading 

factor to each grid cell in the unmonitored portion of the model domain.
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S1.C Examination of estimated nitrate inputs to the water table

The choice of base model and the associated differences in the subsurface flow and 

transport regime has some effect on the transmission of groundwater nitrate information from 

the water table to the monitoring wells (Figure S1).  For example, for the scenario B weighting 

scheme, the estimated loading field that resulted from the LowBFI scenario had more point 

locations for which water table inputs approach five times the county-averaged rates (cf. Figure 

3 in the manuscript).  These additional point locations of high loading were predominately 

located in the Chesterville Branch subcatchment, resulting in the higher estimates of loading to 

that stream (cf. Figure 5 in the manuscript).

While the isolated extreme values visible in Figure S1 may be considered problematic when 

using a highly parameterized approach to estimate a field that is expected to be smoothly 

varying (e.g., hydraulic conductivity), the same is not necessarily the case for the field-scale 

differentiation of agricultural inputs that we are simulating here.  It is additionally important to 

note that the maximum displayed loading factors are points in the interpolated loading field 

rather than a field-scale average loading factor.  Thus, given the little information available to 

describe the spatial distribution of loading through time, the heterogeneity and point 

magnitudes suggested by the various Stage 1 scenarios are not implausible.
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LowBFI base model HighBFI base model

Figure S1.  Outline of monitored area (top panels) and water table loading factors (bottom panels) for 
stage 1 Scenario B.
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S1.D Examination of relationships between mapped variables and nitrate loading derived 
using gradient boosted regression classifier

For the GBR estimators used to extrapolate the spatial distribution of loading from the 

monitored to the unmonitored areas, the training R2 ranged from 0.98 to 1.00 and the testing 

R2 ranged from 0.60 – 0.72 (Table S3).  It is important to here emphasize that the purpose of 

the GBR was not to predict the nitrate loading at any single location in the model domain but 

rather to represent the likely variance in loading across the landscape without making a priori 

assumptions about how that variance should be expressed through system parameterization.  

Representing this variance is in turn important for investigating its effect, if any, on the 

simulation of the nitrate mass flux seen at the catchment outlet.

Table S3. Testing R2 values for GBR extrapolation of water table loading factors from monitored to unmonitored 
portions of model domain.

LowBFI HighBFI

Weighting 
scenario A

0.67 0.60

Weighting 
scenario B

0.70 0.72

While it is outside the scope of this study to fully explore the GBR-formulated relationships 

between the mapped variables and the water table loading factors, it is interesting to note that 

the GBR estimator found properties of the flow and transport system (namely, the distribution 

of recharge and porosity that were estimated during the transport model calibration, as well as 

topography) more important than other potential explanatory variables (Figure S2).  Of 
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secondary importance was land use information derived from the Cropland Data Layer, while 

the Soil Survey Geographic Database (SSURGO) data played effectively no role in the estimator.  

Note, however, that cropland may have played a larger role in the regression if all years were 

aggregated into a single dataset rather than left distributed.  The relative insignificance of the 

SSURGO variables may support our assumption of conservative nitrate behavior, since we 

would expect that any impacts of soils properties on the inferred loading would be due to 

interception and removal process (e.g., soil denitrification) rather than variations in the applied 

loading itself.  However, because the GBR detected much more information in the land use data 

than the soils data, we may assume that the estimated loading factors more represent what 

was applied at the land surface than what was removed before reaching the water table or en 

route to an observation location.
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Figure S2. GBR-identified importance of explanatory variables to the estimation of nitrate 
loading factors. See Table S2 for definition of variables.
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S2 EFFECT OF CALIBRATED TRAVEL TIME SCALING FACTOR ON BASE-FLOW TRAVEL TIME DISTRIBUTIONS (DISCUSSED 

IN RESULTS SECTION OF MANUSCRIPT)

Figure S3.  The base-flow age empirical cumulative distribution function (ECDF), unadjusted (solid line) and with 
the TTD scaling factors estimated during the LowBFI Scenario A calibration scenario (dashed line).  The vertical 
lines show the simulated mean base-flow age for the unadjusted (dotted line) and scaled (dash-dot line) TTDs.

S3 FURTHER DISCUSSION OF STREAM NETWORK CHARACTERISTICS AS POTENTIAL DRIVERS OF CONTRASTING 

STREAM NITRATE REMOVAL EFFICIENCIES

The Morgan Creek riparian zone is thickly wooded, with tree debris common in the stream 

channel (Duff et al., 2008).  As described in the manuscript, the confining unit which outcrops at 

the lower reaches may not only account for substantial nitrogen removal through 

denitrification, but also controls the manner in which discharge enters the main channel.  While 
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Chesterville Branch has not been characterized with the same detail, it is expected that base-

flow discharge to Chesterville Branch is via upwelling through the sandy bed sediments with 

presumably lower denitrification potential, bypassing the riparian zone processing that is an 

important control in Morgan Creek.  This bypass has been observed in other agricultural 

catchments (Tesoriero et al., 2013).  The organic content of the Chesterville Branch bed 

sediments,and the associated denitrification potential of those sediments (cf. Gu et al., 2008) is 

not known.  Furthermore, a coarse comparison of the stream velocities and associated cross-

sectional flow areas (Figure S4) suggests that Chesterville Branch has shorter in-stream 

residence times due to a shorter stream length (Figure 1 in the manuscript) and higher 

velocities.

Figure S4.  Flow characteristics measured at the Morgan Creek and Chesterville Branch stream gages.  Each 
marker represents a field measurement.  See Figure 1 in the manuscript for locations.
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Finally, evidence from a small set of synoptic studies suggests that Chesterville Branch 

headwater concentrations have historically been much higher than headwater concentrations 

in Morgan Creek (Figure S5).  These conclusions are likewise tentative because of the few 

spatially distributed snapshots that include both Morgan Creek and Chesterville Branch but are 

consistent with the observations and conclusions of Bohlke and Denver (1995).  In the early 

1990s (i.e., at the time at which the stream networks were simultaneously sampled) surficial 

aquifer nitrate concentrations in each catchment had nitrate concentrations of 10-20 mg NO3-

N/L for observation wells near the upstream-most site in both catchments.  However, Morgan 

Creek headwater concentrations were substantially lower than aquifer concentrations, while 

Chesterville Branch headwater concentrations were not.

Figure S5.  Base-flow stream nitrate concentrations from synoptic surface water sampling in Morgan Creek and 
Chesterville Branch.
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